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Abstract

Data analysis in phylogeographic investigations is typically conducted in either a
qualitative manner, or alternatively via the testing of null hypotheses. The former, where
inferences about population processes are derived from geographical patterns of genetic
variation, may be subject to confirmation bias and prone to overinterpretation. Testing
the predictions of null hypotheses is arguably less prone to bias than qualitative
approaches, but only if the tested hypotheses are biologically meaningful. As it is
difficult to know a priori if this is the case, there is the general need for additional
methodological approaches in phylogeographic research. Here, we explore an alternative
method for analysing phylogeographic data that utilizes information theory to quantify
the probability of multiple hypotheses given the data. We accomplish this by
augmenting the model-selection procedure implemented in IMA with calculations of
Akaike Information Criterion scores and model probabilities. We generate a ranking of
17 models each representing a set of historical evolutionary processes that may have
contributed to the evolution of Plethodon idahoensis, and then quantify the relative
strength of support for each hypothesis given the data using metrics borrowed from
information theory. Our results suggest that two models have high probability given the
data. Each of these models includes population divergence and estimates of ancestral h
that differ from estimates of descendent h, inferences consistent with prior work in this
system. However, the models disagree in that one includes migration as a parameter and
one does not, suggesting that there are two regions of parameter space that produce
model likelihoods that are similar in magnitude given our data. Results of a simulation
study suggest that when data are simulated with migration, most of the optimal models
include migration as a parameter, and further that when all of the shared polymorphism
results from incomplete lineage sorting, most of the optimal models do not. The results
could also indicate a lack of precision, which may be a product of the amount of data that
we have collected. In any case, the information-theoretic metrics that we have applied to
the analysis of our data are statistically rigorous, as are hypothesis-testing approaches,
but move beyond the ‘reject ⁄ fail to reject’ dichotomy of conventional hypothesis testing
in a manner that provides considerably more flexibility to researchers.
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Geographical patterns of intraspecific variation have
long been central to evolutionary biology (Wallace 1858;
Darwin 1859; Mayr 1942), and descriptive figures that
summarize such patterns of genetic variation are clearly
valuable to researchers [e.g. Fig. 3 of Avise et al. (1987)
and its imitators]. However, inferences regarding the
evolutionary processes that have produced a particular

pattern of genetic variation can be complicated by sev-
eral factors. They may be subject to confirmation bias, a
phenomenon where people interpret novel information
in a manner that is consistent with their preconceived
ideas (Nickerson 1998), and are also thought to be
prone to over-interpretation (Knowles & Maddison
2002). Additionally, any inference about a given species
is inherently dependent upon the capacity of individual
researchers to envision realistic and meaningful histori-
cal demographic processes.
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In response to the ubiquity of qualitative phylogeo-
graphic studies at the turn of the century, several
researchers promoted the statistical testing of a priori
hypotheses as an alternative to descriptive data analy-
sis. For example, Sullivan et al. (2000) tested the predic-
tions of hypotheses pertaining to the response of
Mesoamerican rodents to climatic fluctuations using sta-
tistical approaches such as parametric bootstrapping
rather than qualitative comparisons of tree topology.
(Knowles (2001) made explicit predictions concerning
the structure of Pleistocene refugia, and tested these
predictions using simulations conducted under a coales-
cent model. Nielsen & Wakeley (2001) developed MDIV
in large part to differentiate a model of population iso-
lation strictly due to genetic drift from a model that
included divergence with gene flow. The development
of these methods, and others like them, was concurrent
with the realization that estimates of many of the
parameters that are important to phylogeography may
contain a large amount of variance (Smouse 1998;
Edwards & Beerli 2000; Arbogast et al. 2002; Hey &
Machaho 2003; Hudson & Turelli 2003). In phylogeogra-
phy, statistical approaches to hypothesis testing were
designed to minimize inference error by accounting for
the statistical error inherent to phylogenetic parameter
estimation (Hickerson & Cunningham 2005), as well as
the stochasticity associated with the process of allelic
coalescence (Knowles & Maddison 2002). Accounting
for both types of error is necessary for statistical tests of
phylogeographic hypotheses (Carstens et al. 2005a).
However, while a rigorous statistical framework for
testing a priori phylogeographic hypotheses has theoret-
ical advantages, it can be difficult to apply in systems
that lack the extrinsic information required to develop
hypotheses. Hypotheses are most easily developed in
systems with external information pertaining to the his-
torical range of a species, for example those with fossil
or paleoenvironmental data (Cruzan & Templeton 2000;
Brunhoff et al. 2003; Cognato et al. 2003; Tribsch &
Schonswetter 2003; McCormack et al. 2008), or in spe-
cific habitats that shift in predictable ways with climate
change (Knowles 2001; DeChaine & Martin 2005). While
paleoenvironmental niche modelling can aid in the
development of hypotheses in systems impacted by
recent environmental events (Carstens & Richards 2007;
Richards et al. 2007), many researchers seek to investi-
gate systems where, for a variety of reasons, a priori
hypotheses are not readily developed. Furthermore, the
intrinsic utility of null hypothesis testing is dependent
upon the quality of the hypotheses; rejecting a hypothe-
sis that does not capture meaningful information con-
cerning the biology of the system provides nothing of
value to a researcher (Knowles 2004). For these reasons,
the community of phylogeographers would benefit

from considering alternatives to descriptive and
hypothesis testing approaches.
Phylogeographic research seeks to identify historical

processes that have been important to the evolution of
the focal taxon and to identify how these processes
have contributed to the formation of population genetic
structure. As such, phylogeography is clearly a histori-
cal rather than an experimental science. While descrip-
tive investigations are widely used across the historical
sciences and are valuable, approaches that seek to iden-
tify the hypothesis that best explains the historical data
are desirable (Cleland 2001). For example, Chamberlin
(1890) advocated a method of testing multiple working
hypotheses in the historical sciences where several plau-
sible hypotheses are evaluated on the basis of the
strength of the evidence in their favour. Phylogeogra-
phy is a discipline well-suited to Chamberlin’s
approach, because any combination of a number of his-
torical processes (e.g. population subdivision, popula-
tion divergence, population size change, recombination,
migration ⁄hybridization) may have contributed to the
evolution of a given species. As the primary objective
of any phylogeographic investigation is to identify the
relative contributions of these processes, we could con-
ceptualize our discipline as one that seeks to identify
the most appropriate model of population demographic
history for the focal taxon because the selection of this
model will aid us in identifying the historical processes
that have been most important in its evolution. Adopt-
ing this approach requires a subtle reversal in the rela-
tionship between hypotheses and data, in comparison
to that used in testing null hypotheses.
When null hypotheses are tested in phylogeography,

the P-value represents the probability that the test statis-
tic (which is estimated from the empirical data) is greater
than expected given that the null hypothesis is true (e.g.
Sokal & Rohlf 1994). However, if the data are collected to
evaluate multiple working hypotheses, it is desirable to
reverse this relationship and calculate the probability of
each hypothesis given the data (Anderson 2008). Revers-
ing the relationship between data and hypotheses has an
additional benefit to the historical sciences because it
allows a set of n models (representing n hypotheses) to
be ranked. In this manner, the probability of the hypothe-
sis given the data can be calculated for any number of
hypotheses, these probabilities can be compared and
evaluated using approaches from information theory
(Kullback 1959). In contrast, if we use P-values to test the
set of n hypotheses, we would reject some portion and
fail to reject the others, but would be unable to differenti-
ate among those that could not be rejected.
An information-theoretical approach to phylogeo-

graphic research would proceed by ranking a set of
hypotheses in terms of their probability given the data,
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rather than describing patterns in the data and deriving
hypotheses from these patterns or calculating the
probability of some parameter while assuming a
particular hypothesis is true. In information-theoretical
approaches, information is anything that decreases our
uncertainty about the relative contributions of historical
processes (Burnham & Anderson 1998; Anderson 2008).
In the context of phylogeographic research, historical
processes (represented by parameters) can be incorpo-
rated into a mathematical model and can be compared
by calculating the likelihood of a model given the data.
Thus, any software for genetic data analysis that calcu-
lates the likelihood of the full model and also allows
users to calculate this likelihood using only a subset of
the total parameters in the model could potentially be
used for an information-theoretical approach. In fact,
Nielsen & Wakeley (2001) used an information-theoretic
statistic to evaluate models when they introduced
MDIV; basically they calculated Akaike Information
Criterion (AIC) scores for models that included and did
not include gene flow (Nielsen & Wakeley 2001).
Akaike (1973) defined AIC = )2log(model|data) + 2k,
where k is the number of estimated parameters in the
model. By taking the exponential of the difference
between the AIC score of the best model and the AIC
score of model i, and the weighting across all models,
the model probability (wi) of model i given the data can
be calculated and compared to other models (Anderson
2008). Any number of models can be ranked using AIC
scores, and further this approach is not limited to

comparisons of a single nested model to a full model,
as are likelihood ratio tests.
Until recently, one major impediment to the applica-

tion of information-theoretical approaches has been the
requirement that users conduct a complete run for each
possible submodel—for example, one MDIV analysis
without migration, and one with migration for the
question explored by Nielsen & Wakeley (2001). How-
ever, a recently introduced extension of the isolation-
with-migration model, IMA (Hey & Nielsen 2007),
includes a novel procedure for model selection. The
model implemented in IMA assumes two descendant
and one ancestral population, and estimates h from
each population, migration rates between each descen-
dant population, as well as the time since population
divergence. IMA utilizes an computational approach first
described by (Kuhner et al. 1995) to estimate the joint
posterior probabilities of the model parameters, and it
is these estimates that enable researchers to evaluate
nested demographic models. As the likelihoods of each
of 16 reduced models (Fig. 1) given the data are calcu-
lated, users of IMA are also able to assess the statistical
significance of biologically important parameters such
as gene flow, divergence among populations, and popu-
lation size by applying information-theoretical
approaches to model selection.
To our knowledge, two investigations have used some

type of model-selection approach with the isolation-
with-migration model (Brumfield et al. 2008; Geraldes
et al. 2008). Brumfield et al. (2008) used IMA to compare

Fig. 1 Schematic of the relationships among submodels in IMA. Shown is the full model, which estimates five parameters, which are
subsequently reduced in various combinations in each of the submodels. Note that IMA also estimates population divergence (t),
which is not included in the model-selection procedure because t is not included in the joint posterior density function of IMA (J. Hey,
personal communication: http://groups.google.com/group/Isolation-with-Migration).
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a model where migration was symmetrical and popula-
tion hs were equal (h1 = h2 = hA and m12 = m21) for sev-
eral pairwise comparisons of Amazonian birds.
Geraldes et al. (2008) compared models with and with-
out gene flow to test hypotheses related to introgression
of the Y-chromosome in European rabbits. Both studies
were motivated by the desire to ascertain the biological
importance of the various parameters; for example, was
it justifiable to treat population hs as equal (Brumfield
et al. 2008), or has gene flow historically occurred at a
high level (Geraldes et al. 2008). Given that many inves-
tigations use the isolation-with-migration model to
explore gene flow between divergent populations (Niku-
la et al. 2007; Kotlik et al. 2008; Lee & Edwards 2008;
McCormack et al. 2008; Niemiller et al. 2008; Szovenyi
et al. 2008), as well as introgression ⁄hybridization (Car-
ling & Brumfield 2008; Good et al. 2008; Hird & Sullivan
2009), the model-selection approach implemented within
IMA has broad application to phylogeography. However,
the greatest value of this approach is that it allows phy-
logeographic researchers to evaluate multiple working
models in the spirit of Chamberlin (1890), thereby quan-
tifying the relative strength of support for various com-
binations of historical processes. Rather than describing
the pattern of genetic variation or testing a priori
hypotheses, researchers can identify processes that have
been important in structuring the genetic diversity
within a given species by evaluating competing models
using approaches such as AIC (Burnham & Anderson
1998). Here, we collect data from a representative empir-
ical system, analyse these data and evaluate models
using IMA, explore the performance of the model selec-
tion using simulated data, and provide an example of
how information theory can be used to identify hypothe-
ses that are well-supported given the data.

Methods

Empirical data

Over 250 Plethodon idahoensis were collected from north-
ern Idaho, Montana, and British Columbia as part of a
broader comparative phylogeographic investigation into
the Pacific Northwest mesic forest ecosystem (Carstens
et al. 2004, 2005b). Data from the cytochrome b (cyt b)
mitochondrial gene suggest that significant population
structure within the species is found between the two
southern-most river drainages (the Lochsa and Selway
Rivers) and the remaining northern drainages. Descrip-
tive evidence supports this finding, for example there is
monophyly of individuals from the southern drainages,
and results from an analysis of molecular variance (Car-
stens et al. 2004) suggest that southern populations
have historically been isolated from northern popula-

tions. Coalescent-based tests of null hypotheses have
also been conducted (Carstens et al. 2005b; Carstens &
Richards 2007), and generally these tests support the
idea that populations were restricted to multiple glacial
refugia during the Pleistocene. Furthermore, there is
evidence for restricted gene flow between these popula-
tions (Carstens et al. 2005c) and population expansion
(Carstens et al. 2004). Consequently, the P. idahoensis
system provides an opportunity to explore the utility of
an information-theoretical approach to phylogeography
using the model-selection procedure implemented in
IMA because the set of parameters included in this
model encompass the two most relevant questions to
this system: (i) has migration between populations his-
torically occurred at high levels between the southern
and northern groups within P. idahoensis and (ii) has
there been a substantial change in the size of the ances-
tral populations (as would be predicted under a refu-
gial model). In P. idahoensis, answering these questions
will improve our understanding of how historical
demographic processes that occurred as a result of
Pleistocene climatic fluctuations.
To explore these questions, we add data from two

nuclear genes to a previously collected 669-bp fragment
of cyt b (Carstens et al. 2004). Additional data were col-
lected from the internally transcribed spacer of the
16SrRNA gene (Hillis & Dixon 1991) and from the recom-
bination activating protein (RAG) 1 gene (Wiens et al.
2006). We gathered data from 30 P. idahoensis, twelve
individuals from the Lochsa or Selway drainages, and
eighteen from the North Fork of the Clearwater and other
northern drainages. Samples were chosen at random
from available tissue samples, not on the basis of infor-
mation from the previously collected cyt b data. In devel-
oping this sampling strategy, we sought to balance the
anticipated improvement in accuracy of the parameter
estimates that usually accompanies an increase in the
number of loci (Edwards & Beerli 2000; Carling & Brum-
field 2007; Carstens & Knowles 2007) with the computa-
tional demands of large multilocus data sets. In choosing
three loci and thirty individuals, we hope to collect
enough data to estimate parameters reasonably well in
an amount of time that is short enough to allow a sensi-
tivity analysis to be conducted using simulated data and
replication (details of this analysis below). Sequence data
were phased to alleles either by polymerase chain reac-
tion (PCR) subcloning (using high fidelity Taq) and sub-
sequently sequencing eight clones from each sample, or
through the use of PHASE (Stephens et al. 2001).
The isolation-with-migration model in IMA assumes

that loci are evolving in a neutral manner, and also that
there is no recombination within each locus. To explore
these assumptions, we calculated Tajima’s (1989) D in
each of the populations. While a significantly negative
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value of D can result from natural selection or from
demographic effects (such as population expansion or
structure), values that are not significant suggest to us
that these loci are not inappropriate to use in an IMA

analysis. However, this test may have low power given
our samples sizes (36 and 24 chromosomes as collected
here in the northern and Lochsa ⁄Selway populations)
and subsequently the protein-coding genes used in this
analysis could be subject to weak purifying selection
that may not be detected by Tajima’s D (Hammer et al.
2003). We also conducted the four-gamete test in each
population using DnaSP (Rozas & Rozas 1999) to test
for recombination.
Gene flow, population divergence, and h = 4Nel were

estimated using IMA (Hey & Nielsen 2007) for all the
data. Initially, 25 runs of IMA were conducted with vary-
ing prior values for the theta, migration and divergence
time parameters with a fixed run length of 25 h and six
coupled Markov chains. Once optimal priors were iden-
tified, we experimented by varying the number of cou-
pled Markov chains (2–10) and the heating scheme. Via
this process, we settled on prior values of h1 = 25,
h2 = 25, hA = 50, m12 = 1, m21 = 1, t = 10, and determined
that four coupled Markov chains and a geometric heat-
ing with parameters that varied between )g1 = 0.05 and
)g2 = 10.0. We then conducted two sets of IMA runs
with varying run times (25, 50 and 100 h) on a 3.0 GHz
MacPro, using random number seeds for each and a
burn-in period of 100 000 steps. In these runs, we analy-
sed our data using the full isolation-with-migration
model and conducted the model-selection procedure
independently on each run to explore the effects of run-
time variation on the selection procedure. The posterior
density function of the full isolation-with-migration
model is maximized to generate parameter estimates in
IMA (Hey & Nielsen 2007) and the model-selection pro-
cedure repeats this process for each of 16 reduced mod-
els (Fig. 1). Due to reasons discussed by Hey & Nielsen
(2007), the population divergence parameter (t) is not
included in this procedure. Hey & Nielsen (2007) con-
duct model selection by comparing the results of the
likelihood ratio test (LRT) to an appropriate chi-squared
distribution, and also imply that a correction for multi-
ple comparisons is appropriate. As a result, we con-
ducted model selection using both uncorrected LRTs
and a Bonferroni correction for multiple comparisons.
We also computed the AIC scores (Akaike 1973), AIC
differences, model likelihoods and probabilities follow-
ing Anderson (2008).

Simulation study

Once we were confident that we had good estimates of
parameters from our empirical data, we used MS

(Hudson 2002) to simulate genealogies for each locus
under three coalescent models. The first of these corre-
sponded to the full isolation-with-migration model (AB-
CDE), with values of h1, h2, hA, m12, m21, and t that
matched those estimated from our empirical data. The
second model did not include migration (ABC00), but
was simulated using values of h1, h2, hA, and t that
matched those from our empirical data. The third
model also did not include migration (AAA00), and did
not incorporate differences in h among the ancestral
and descendant populations (e.g. h1 = h2 = hA and t).
For the third model, h1 = h2 = hA was set to the arith-
metic mean of the empirical estimates. For each set of
genealogies, we used SEQ-GEN (Rambaut & Grassly 1997)
to simulate sequence data with characteristics (model of
sequence evolution, number of segregating sites) match-
ing our empirical data. Once these data were simulated,
we assembled input files for IMA using UNIX and PERL

scripts. In this way, we were able to produce data that
either did not differ appreciably from the empirical data
(the full model), or differed in known ways (the no
migration or no migration with equal theta models). These
simulated data were then analysed using the model-
selection protocol implemented in IMA in order to
explore the sensitivity of the program. We conducted
100 replicates, including the model-selection protocol,
for each model.

Results

Analysis of empirical data

Sequence data were collected from 30 individuals,
including 884 bp from the ITS of the 16s rRNA gene,
and 1210 bp from the RAG-1 gene and are deposited in
GenBank under Accession numbers GQ337923–
GQ337954 (ITS) and GQ247792–GQ247811 (RAG-1).
Sequence data were resolved to alleles using either PCR
subcloning (nITS = 13; nRag1 = 12) or PHASE. While levels
of polymorphism in these genes were not as high as in
the mitochondrial DNA, they nevertheless exhibited
considerable variation (Table 1). Results from the Taj-
ima’s D-test (Table 1) and the four-gamete test suggest
that the assumptions of the isolation-with-migration
model are not violated by these data. Sequence
alignment of all loci was unambiguous and conducted
manually.
Our preliminary analysis suggested that optimal mix-

ing occurred with four coupled Markov chains and a
geometric heating scheme ()g1 = 0.05 and )g2 = 2.0).
All metrics suggested that the Markov chains converged
before the end of the burn-in and were adequately sam-
pling the posterior distribution of parameter space. For
example, the lowest ESS value, which was recorded
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during one of the 25-h runs, was ESS = 99, and for
longer runs this value was considerably higher (e.g.
ESS = 563 for one of the 100-h runs). Similarly, there
was no discernable pattern to the plots of parameter
trend lines. After examining the IMA output of all runs,
we are convinced that there is no evidence that suggests
that the Markov chain have not converged by the end
of the burn-in period.
Estimates of parameters from the IMA analysis

(Table 2) have at least three biologically important
implications. First, estimates of ancestral h are lower
than estimates of descendent h, this could indicate isola-
tion in a small ancestral population. Second, estimates
of divergence time between populations are much
greater than zero, which supports earlier findings of
population structure. Mean migration rates, while small,

are nonzero, implying that divergence has occurred
with gene flow. One plausible interpretation of values
of this magnitude is population divergence with low
rates of gene flow. Since these parameters are reported
in terms of coalescent units, conversion to values that
are more easily interpreted requires some assumptions
about the mutation rate, which we can not calculate
directly. However, divergence between Plethodon idaho-
ensis and its sister taxon Plethodon vandykei is probably
between 5 and 2 Myr (Carstens et al. 2005b; Wiens et al.
2006); given this value the temporal divergence between
the Lochsa ⁄Selway populations and the northern drain-
ages is between 27 000 and 68 000 generations, and
migration rates are something on the order of one indi-
vidual per 1000 generations. This suggests that there is
not a strong pattern of ongoing gene flow between
these populations.
Results of model selection across each of the runs

were similar, and for ease of discussion we combined
the posterior distributions from the two long runs (cor-
responded to more than 3.5 · 108 steps in the Markov
chain) and repeated the model-selection procedure
(Table 3). These results illustrate the complex nature of
the joint estimates of model parameters. For example,
using an uncorrected likelihood ratio test, there are nine
models that can be rejected and seven which can not be
rejected. Other than models that force population h val-
ues to be equal (e.g. AAA– models; which were all
rejected), it is difficult to draw generalities about which
parameters are ‘important’ to include in a model of
P. idahoensis population demography from these results.
For example, some of the models which can not be
rejected do not include a migration parameter, while
others which can not be rejected include one or two
migration parameters. Further, some of the models

Table 1 Sequence data statistics
Gene bp s h p hw Fixed D P-value

Cyt b
All 669 27 13 0.00822 0.01093 2 )0.9358 >0.10
LS 10 6 0.0045 0.0041 0 0.3353 >0.10
ND 15 13 0.00474 0.0060 0 )0.7415 >0.10

ITS
All 884 14 25 0.00482 0.00390 0 0.7483 >0.10
LS 13 15 0.00536 0.00422 0 0.9210 >0.10
ND 9 16 0.00337 0.00273 0 0.7727 >0.10

Rag1
All 1210 13 17 0.00217 0.00253 0 )0.4347 >0.10
LS 8 8 0.0016 0.00188 0 )0.4918 >0.10
ND 8 11 0.00773 0.00183 0 )0.1751 >0.10

Characteristics of sequence data 675 for three loci are shown, for 676 all the data as well
as the Lochsa/Selway (LS) and northern drainages (ND) populations. 677 Characteristics
include the length (bp), number of segregating sites (s), heterozygosity (h), 678 nucleotide
diversity (p), Waterson’s theta (hw), the number of fixed differences between 679
populations, Tajima’s D and its P-value.

Table 2 Parameter estimates from the empirical data using
IMA

h1 h2 hA m1 m2 t

HiPt
Run1 9.5137 8.8014 1.5263 0.0005 0.0295 1.905
Run2 9.4119 8.8014 1.5263 0.0005 0.0245 1.905

Mean
Run1 10.892 9.7872 5.0007 0.1382 0.1166 2.2543
Run2 10.8813 9.7741 5.3667 0.1406 0.1156 2.2874

HPD90Lo

Run1 5.6472 5.3419 0.1018 0.0005 0.0005 1.195
Run2 5.6472 5.3419 0.1018 0.0005 0.0005 1.175

HPD90Hi

Run1 15.924 13.9907 5.5963 0.3055 0.2455 3.025
Run2 15.924 13.9907 5.7998 0.3125 0.2445 3.075

For each parameter, the high point, mean, and boundaries of
the highest posterior density are given. Results of two long
runs are shown.
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which can not be rejected allow h to differ among all
lineages, while others allow only the descendant and
ancestral h to differ. Most (but not all) of the models
which can not be rejected share two general patterns:
they either have low values of ancestral hA (!2.3),
higher values for descendent h s (!11), and no migra-
tion, or are those in which the respective h values are
even lower (hA!1.5 and h1,2!9.5) with some migration
(m1,2!0.05). In short, if a model with migration is fitted
to the data, the estimates of ancestral and descendant h
are reduced. Accompanying these differences is a differ-
ence in the estimate of population divergence (t); mod-
els with migration tend to have larger estimates of t
than models without (Table 3). Note that if we correct
for multiple comparisons using a Bonferroni correction
(e.g. by dividing 0.05 by 16), we can not reject any of
the models.
While we can learn something useful about evolution-

ary processes that have been important in the P. idaho-
ensis system from the likelihood ratio tests, these tests
do not differentiate among the models which can not
be rejected, and as such do not allow identification of
the optimal model. An information-theoretical approach
to phylogeography requires some objective way of
ranking these models, so we computed AIC scores (Ak-
aike 1973) for each model (Table 4). The AIC is based
on both the probability of the model given the data and
the number of parameters such that, should two models
have the same likelihood and differ in the number of
parameters, the model with fewer parameters will have
a better AIC. When models were ranked by AIC, the

best model was one that included h1 = h2, hA, and t
(AAC00). The second-best model included migration
h1 = h2, hA, m12 =m21 and t (AACDD). We quantified the
difference between models by comparing the model
with the best AIC score to any other model (Di =
AICi ) AICmin). The resulting Di values estimate

Table 3 Results of the model selection using IMA

Model t )log(P) h1 h2 hA m1 m2 d.f. )ln L 2LLR w ⁄ out BC w ⁄BC

AAC00 1.6713 2.6181 10.8797 10.8797 2.4262 0.0001 0.0001 3 4382.5391 1.7462 No No
AACDD 2.1643 1.8577 9.7182 9.7182 1.5016 0.0577 0.0577 2 4381.7787 0.2254 No No
ABC00 1.6749 2.5452 11.7299 10.2152 2.4266 0.0001 0.0001 2 4382.4662 1.6004 No No
ABC0D 2.1027 1.7472 10.3274 9.4342 1.5316 0.0001 0.095 1 4381.6682 0.0044 No No
AACDE 2.103 1.7736 9.8597 9.8597 1.5307 0.0035 0.0872 1 4381.6946 0.0572 No No
ABCDD 2.1697 1.8449 9.8631 9.4589 1.4751 0.058 0.058 1 4381.76585 0.1997 No No
ABCD0 2.0076 2.2723 10.3021 9.7436 1.8714 0.1131 0.0001 1 4382.1933 1.0546 No No
AAA00 1.283 6.9995 9.1936 9.1936 9.1936 0.0001 0.0001 4 4386.92045 10.5089 Yes No
ABB00 1.351 6.0887 11.9582 7.3859 7.3859 0.0001 0.0001 3 4386.00965 8.6873 Yes No
AAADD 1.777 6.1114 8.096 8.096 8.096 0.0713 0.0713 3 4386.03235 8.7327 Yes No
ABBDE 1.6291 5.3206 11.1877 6.8544 6.8544 0.000101 0.1088 1 4385.2416 7.1512 Yes No
ABBDD 1.7295 5.454 10.5582 6.93 6.93 0.0635 0.0635 2 4385.375 7.418 Yes No
ABA00 1.33 6.7374 8.2059 10.4829 8.2059 0.0001 0.0001 3 4386.65835 9.9847 Yes No
ABADD 1.7694 5.8735 7.2364 9.3331 7.2364 0.068 0.068 2 4385.7945 8.257 Yes No
AAADE 1.7766 6.1114 8.0709 8.0709 8.0709 0.0704 0.072 2 4386.03235 8.7327 Yes No
ABADE 1.7186 5.8333 7.0689 9.9757 7.0689 0.1598 0.000126 1 4385.7542 8.1764 Yes No

Shown are values from the first long IMA run of the empirical data. High point values for each parameter are shown, in addition to
the degrees of freedom for each model, marginal likelihoods of each model given the data, likelihood ratio test statistic (2LLR), and
the results with and without a Bonferroni correction (BC) for multiple comparisons. Note that estimates of m1 = 0.0001 and
m2 = 0.0001 are indistinguishable from zero.

Table 4 Information-theoretic statistics for each of the IMA

models

Model k AIC Di wi Emin,i

AAC00 2 8769.0782 0 0.471458846 1
AACDD 3 8769.5574 0.4792 0.291964382 1.61478206
ABC00 3 8770.9324 1.8542 0.073820156 6.386586937
ABC0D 4 8771.3364 2.2582 0.049285593 9.565855122
AACDE 4 8771.3892 2.311 0.046750821 10.08450412
ABCDD 4 8771.5317 2.4535 0.04054173 11.62897699
ABCD0 4 8772.3866 3.3084 0.017243441 27.34134431
FULL 5 8773.332 4.2538 0.006699493 70.37231972
ABB00 1 8775.8409 6.7627 0.000545055 864.9744769
ABA00 2 8776.0193 6.9411 0.000455997 1033.906887
ABBDD 2 8776.0647 6.9865 0.000435758 1081.928093
AAA00 3 8776.4832 7.405 0.000286743 1644.184836
ABADD 3 8776.75 7.6718 0.000219595 2146.942466
AAADD 2 8777.3167 8.2385 0.000124597 3783.860259
ABBDE 3 8777.589 8.5108 9.49E-05 4968.136008
ABADE 3 8778.0647 8.9865 5.90E-05 7994.427376
AAADE 4 8779.5084 10.4302 1.39E-05 33867.12301

Shown are models considered by IMA, the number of
parameters for each model, its AIC score, AIC differences (Di),
model probabilities (wj) and evidence ratio (Emin,j). All values
were calculated following Burnham & Anderson (1998).

4276 B. C. CARSTENS, H. N. STOUTE and N. M. REID

! 2009 Blackwell Publishing Ltd



Kullback & Leibler (1951) information (e.g. the distance
between the best model and model i), and are easy to
interpret; models improve relative to the best model as
Di approaches zero. The AIC Di between the two best
models (AAC00 and AACDD) is !0.5, and other mod-
els are substantially worse. Two other statistics are used
to transform AIC values into metrics that are more eas-
ily interpreted. We calculated Akaike weights (wi), the
normalized relative likelihoods of the models given the
data, and evidence ratios (wmin ⁄wi) following Burnham
& Anderson (2002). Akaike weights provide a way to
quantify how much of the total evidence favours a par-
ticular model—for example, some 76% of the total like-
lihood is contributed by the AAC00 and AACDD
models. Evidence ratios provide a way to conceptualize
the relative odds that a model is best given the data. If
the Akaike weights of model i and the best model are
0.12 and 0.6, respectively, then the evidence ratio is
0.6 ⁄ 0.12 = 5, and the odds against model i being the
best model are 5:1. When applied to our data, evidence
ratios suggest that the second-best model (AACDD) has
1.6:1 odds compared to the best model (AAC00), a
degree of support that we consider sufficient to con-
sider strongly (Table 4).

Simulation study

Simulated data were analysed in order to evaluate the
sensitivity of the model-selection procedure in IMA given
parameter values similar to those observed in our
empirical data. With one exception (total run time), we
used the same settings as in our empirical IMA runs. As
results of the long runs of the empirical data were not
appreciably different from the shorter runs, we set run
length on the simulated data to 24 h, which corre-
sponded to an average of 4.3 · 106 steps in the Markov
chain for each replicate. Simulated data were analysed
using the Louisiana State University High Performance
Computing network on a cluster computer with multi-
ple 2.33 GHz nodes.
Two important results follow from this sensitivity

analysis. Results suggest that the procedure is sensitive
to migration. When migration is present in the simu-
lated data at levels commensurate with estimates from
our empirical data, models that do not include migra-
tion as a parameter will typically be rejected (Table 5).
However, when data are simulated without migration,
models that do not include migration as a parameter
are not always rejected, regardless if h is allowed to
vary (Table 5), unless we correct for multiple compari-
sons. A correction for multiple comparisons is appropri-
ate here, as we are making 16 comparisons of the
likelihood of model i to the likelihood of the full model,
and have applied a Bonferroni correction to these

results (Table 5). This correction clarified our results to
some extent; the suggestion that models that do not
include migration as a parameter are easily rejected
when migration has been a historically important pro-
cess is supported. However, when data are simulated
with a constant h, these differences are not sufficient to
reject models where h is allowed to vary. We interpret
these results to mean that the model-selection proce-
dure in IMA is more sensitive to violations involving the
migration parameters than the h parameters for values
similar to those found in our empirical data.
Results from the simulated data analysis are more

meaningful when AIC values are calculated and an
information-theoretical approach is used to interpret the
results. We calculated AIC values for all models across
replicates, and determined that in nearly all cases the
model with the best AIC score captured some meaning-
ful information about the conditions that the data were
simulated under, even if the best model did not match
the simulation model exactly. For example, when data
were simulated with migration and hs that varied by
lineage, a model with at least one migration parameter
and two h parameters was chosen in 70% of the repli-
cates (Table 6). When data were simulated either with
no migration, or with no migration and equal hs, mod-
els that captured a similar proportion of the meaningful

Table 5 Results from the simulation study

IMA

model

Uncorrected
Corrected multiple
comparisons

ABCDE ABC00 AAA00 ABCDE ABC00 AAA00

AAADE 0.03 0.04 0.05 0.01 0.00 0.01
AAADD 0.10 0.06 0.08 0.01 0.00 0.01
AAA00 0.54 0.00 0.08 0.12 0.00 0.00
ABC00 0.61 0.06 0.11 0.19 0.00 0.00
ABCD0 0.30 0.10 0.04 0.09 0.00 0.00
ABC0D 0.40 0.03 0.07 0.12 0.00 0.00
ABCDD 0.03 0.00 0.00 0.00 0.00 0.00
ABADE 0.11 0.09 0.05 0.01 0.00 0.00
ABADD 0.06 0.00 0.01 0.00 0.00 0.00
ABA00 0.59 0.01 0.05 0.15 0.00 0.00
ABBDE 0.06 0.03 0.03 0.01 0.00 0.00
ABB00 0.56 0.01 0.05 0.18 0.00 0.00
AACDE 0.09 0.03 0.05 0.01 0.00 0.01
AACDD 0.03 0.03 0.03 0.00 0.00 0.01
AAC00 0.59 0.01 0.09 0.15 0.00 0.00
AAADE 0.03 0.04 0.05 0.01 0.00 0.01

For each model, the proportion of replicates where the model
could be rejected using a likelihood ratio test, for each of three
sets of simulated data corresponding to the ABCDE, ABC00,
and AAA00 models are shown. Columns on the left are not
corrected for multiple comparisons, columns on the right are
corrected using a Bonferroni correction.
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parameters were chosen in 89% and 81% of the repli-
cates, respectively. These results are probably influ-
enced by the number of processes that have shaped the
evolutionary dynamics of a given system. For example,
it may be more costly to under parameterize models
when data are simulated with migration and hs that
differ across lineages, than it is to over parameterize
models when data are simulated without migration and
with hs that are the same across lineages. This sugges-
tion is supported by the dramatic difference in the vari-
ance in the marginal likelihoods of the models given
the data across the three sets of simulated data (Fig. 2).

Discussion

Empirical investigation

Information-theoretic metrics allow us to make rigorous
and unbiased inferences about the recent historical
demography of Plethodon idahoensis. We move beyond
the ‘reject ⁄ fail to reject’ approach inherent to null
hypothesis testing, by following Chamberlin (1890) in
treating each of the models within IMA as a hypothesis
that describes a particular set of historical processes that
may have influenced the evolution of P. idahoensis. Cal-
culating AIC scores allows us to quantify the strength
of support in the data for various models (Anderson
2008). Curiously, the two models that are most probable
given the data are biologically very different. One of
these (AAC00) includes migration as a parameter, and
the other (AACDD) does not (Table 4). This suggests

that we have two regions of parameter space with a
high probability given the data, one that includes
migration and one that does not. Each of these regions
includes estimates of ancestral and descendent h, as
well as population divergence (t), but the estimates of
these parameters vary (Table 3). When migration is
included in the model, estimates of t increase and esti-
mates h of decrease relative to the model that does not
include migration. While in each case the estimates of
hA are small relative to the estimates of the descendant
h (supporting the hypothesis that P. idahoensis was iso-
lated in multiple Pleistocene refugia), the absolute val-
ues of these parameters change depending on the
inclusion of the migration parameter.
Results from the empirical data suggest that the

parameter space describe by the IMA model is complex,
and that observed patterns in the data can be explained
by more than one combination of parameters. Apart
from evaluating the relative plausibility of a set of
hypotheses, information-theoretic evidence ratios pro-
vide an efficient way to explore the effects of adding
data. For example, one could explore the effects of
sequentially adding loci or samples to the evidence
ratios, which could either be accomplished via power
analyses with simulated data or by subsampling from
the empirical data. AIC scores support the interpreta-
tion that we have two competing models of historical

Table 6 Models selected for the simulated data replicates

h1, h2, hA, m12,
m21(ABCDE)

h1, h2, hA,
m12 = 0,
m21 = 0(ABC00)

h1 = h2 = hA,
m12 = 0,
m21 = 0(AAA00)

ABCD0 21 AAC00 36 AAA00 40
AACDD 17 ABB00 21 AAC00 20
ABC0D 15 ABA00 20 ABA00 14
AAC00 14 ABC0D 8 ABB00 13
ABB00 9 ABCD0 4 ABADD 3
ABCDE 7 AACDD 3 ABC0D 3
ABBDD 6 ABADD 2 ABCD0 2
ABADD 5 ABBDD 2 AACDD 2
ABAD0 3 AACDE 1 ABADE 1
AACDE 2 ABADE 1 ABBDD 1
ABBDE 1 ABBDE 1 ABC00 1
ABC00 1 ABC00 1

A count of the number of times that various models had the
best AIC scores for the simulation study. All models ranked by
the number of times that had the best AIC score, for each of
the three sets of simulated data corresponding to the ABCDE,
ABC00 and AAA00 models are shown.

Fig. 2 Variance in the likelihood of the models given the data.
Each bar represents the variance in the marginal likelihoods
across the sixteen models considered by IMA, for data simulated
under one of three conditions. Blue bars correspond to data
simulated with migration and with hs that varied by lineage,
grey bars correspond to data simulated without migration but
with hs that varied by lineage, and green bars correspond to
data simulated without migration and with hs that were equal
among lineages. Note that some bars on the right-tail of each
distribution are too small to visualize on the scales of the
y-axis.
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demography that are highly probable given the data
(AAC00 and AACDD). To some degree, these models
each are supported by specific patterns in each locus;
the models with the highest AIC scores for the ITS,
Rag1 and cyt b loci were the ABCDE, AAC00, and
AAC00, respectively. When data from ITS ⁄ cyt b and
ITS ⁄Rag1 were combined, the AACDD model had the
best AIC value, and when data from Rag1 ⁄ cyt b were
combined, the AAC00 model was best.

Simulation study

As the model-selection approach included in IMA has to
date only been used on a handful of systems, we used
simulated data to assess the performance of the model-
selection procedure given our data. Our results
(Table 5) suggest that the procedure implemented in
IMA is able to reject models without migration when
migration has been historically important in a large pro-
portion of the replicates. Data that were simulated with-
out migration, but with different population sizes, were
more problematic for model selection (Table 5). We sus-
pect that some combination of the following explana-
tions can account for these results. First, data were
simulated under values of t, h, and m matching our
empirical data, and it is possible, particularly in the
case of the h1 and h2 values, that these were too similar
to one another to easily differentiate the AAC– from the
ABC– models. Second, our run times for the simulation
study were shorter than those used in the empirical
study. While ESS values suggest that the Markov chains
had reached stationarity, it may be that our sample of
the posterior distribution is inadequate to compute the
marginal likelihoods of the models accurately. To
explore this issue, we repeated five of the ABCDE runs
while doubling the run time, and obtained similar
results, which suggested to us that our run times were
adequate for this simulation study. Finally, it is conceiv-
able that we have not collected data from a sufficient
number of loci, or from a large enough number of indi-
viduals, to actually differentiate the AAC00 from the
AACDD and other models.

Are information-theoretical approaches broadly useful
to phylogeography?

Phylogeographic research aims to understand the
unique combination of historical processes that have
shaped the evolution of the focal taxon (Avise et al.
1987). The isolation-with-migration model is increas-
ingly important to the discipline, as evidence by the
over 300 citations of the manuscripts that introduced IM

and IMA since 2004 (Web of Science). This suggests to us
that the information-theoretical approach described

above should be broadly useful, even if it can not cur-
rently be applied to every phylogeographic system
because these systems do not match the model used in
IMA. Examples of inappropriate systems include those
where one of the descendent lineages is founded by a
small subset of the ancestral population (a splitting
parameter is included in IM but not IMA) and those that
are divided into more than two populations. It is also
worth noting that this approach can be extended to
questions beyond those that fit the isolation-with-migra-
tion model. For example, the computer program LAMARC

allows users to include or exclude parameters such as
migration and population size change in its calculation
of the relative likelihood of the model given the data
(Kuhner 2006), and as such could be applicable to phy-
logeographic systems with more than two populations
to evaluate the relative contributions of gene flow and
population expansion if these relative likelihoods were
comparable. Other questions are amenable to this infor-
mation-theoretic framework; for example Fitzpatrick
et al. (2008) used Bayes factors to compare two models
implemented in Structure to see if they could reject a
model of hybridization at a contact zone (Pritchard
et al. 2000; Fitzpatrick et al. 2008). In essence,
approaches that seek to identify the best demographic
model given the data are similar to the model-selection
procedures used by phylogenetists to identify models
of sequence evolution (e.g. Sullivan & Joyce 2005), and
in general model-selection approaches are broadly
applicable across ecology and evolutionary biology
(Johnson & Omland 2004). While no current method
implements that phylogeographic equivalent of the
GTR+I+C model of sequence evolution, such a model is
theoretically possible. Alternatively, methods such as
approximate Bayesian computation could provide phy-
logeographers with the flexibility to evaluate a wide
range of hypotheses (Nielsen & Beaumont 2009). While
certain biological processes (e.g. gene flow, demo-
graphic expansion, genetic drift) are more easily incor-
porated into a likelihood framework than others (e.g.
selection), we nevertheless remain hopeful that upcom-
ing methological advances will allow us to consider
more complex models. Certainly the release of IMA 2.0
(J. Hey, personal communication) while this manuscript
was in revision is a positive sign that more complex
models can be evaluated with information-theoretical
approaches.
Phylogeographic research seeks to identify the histori-

cal processes that have influenced genetic variation
within populations. In practice, many investigators gath-
ered data in order to develop or test hypotheses that are
essentially models of historical population demography.
For example, Carstens et al. (2005b) posited that isolation
in multiple refugia during Pleistocene glacial periods, fol-
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lowed by postglacial expansion, was a likely explanation
for the pattern of genetic diversity observed in P. idahoen-
sis. This scenario is essentially a model of the historical
demography, albeit one that is rather short on specifics,
that has been developed over the course of several
publications. While it may be unfair to characterize this
approach as laborious, it necessarily involves a number
of different types of analyses, each with some specific
aim. Will phylogeography proceed in this manner in the
future, as sequence data become increasingly easier to
collect, as multilocus data sets grow into genomic data
sets, and as more complex analytical methods become
available? We hope not. Rather, we envision a future
where a structured coalescent model can incorporate all
of the historical processes that may influence genetic
diversity, where one can estimate parameters associated
with these models, and one where phylgeographic
researchers apply information-theoretical approaches to
evaluate the strength of support for particular hypothe-
ses contained within the full model. This approach
would be as broadly applicable as the conventional
descriptive approach, but at least as rigorous as statistical
approaches to hypothesis testing.
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Corrigendum

Contributed by BRYAN C. CARSTENS, HOLLY N. STOUTE and NOAH REID
Department of Biological Sciences, 202 Life Sciences Building, Louisiana State University, Baton Rouge, LA 70803, USA

Carstens et al. (2009) presented a method for evaluating models of historical demography under the isolation-with-
migration model implemented in the software package IMa (Hey & Nielsen 2007). Our manuscript suggested that phy-
logeographic inferences could be made with a demographic model-selection framework using AIC scores of the models
and information theoretic statistics (Burnham & Anderson 1998). Regretfully, we made a mistake in the calculation of the
)ln L values reported in Table 3 (Carstens et al. 2009). This mistake resulted from a misinterpretation of the IMa output;
it is not possible to calculate the likelihood of the reduced models using IMa. However, we are still able to compare the
relative AIC differences among models using the )log(P) values, which are the maximized posterior density functions of
each of the models considered by IMa given the data. Their usage in the calculation of information theory metrics such
as the AIC differences (Di) follows from the justification provided by Hey & Nielsen (2007), who used these values to con-
duct likelihood ratio tests. While the absolute AIC values (reported in Table 4) are affected by the erroneous calculation
of the likelihoods of the reduced models, the relative differences among AIC values do not change when the )log(P) val-
ues are used to calculate AIC scores. Consequently, neither the biological inferences regarding the evolution of Pseudofa-
gus idahoensis, or the general approach to phylogeography suggested by Carstens et al. (2009) are compromised.
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Table 4 Information theoretic statistics for each of the IMA models. Shown are models considered by IMA, the number of parameters
for each model, its AIC score, AIC differences (Di), model probabilities (wj) and evidence ratio (Emin,j). All values were calculated fol-
lowing Burnham & Anderson (1998)

Model k AIC Di wi Emin,i

AAC00 2 9.2362 0 0.471458846 1
AACDD 3 9.7154 0.4792 0.291964382 1.61478206
ABC00 3 11.0904 1.8542 0.073820156 6.386586937
ABC0D 4 11.4944 2.2582 0.049285593 9.565855122
AACDE 4 11.5472 2.311 0.046750821 10.08450412
ABCDD 4 11.6898 2.4535 0.04054173 11.62897699
ABCD0 4 12.5446 3.3084 0.017243441 27.34134431
FULL 5 13.49 4.2538 0.006699493 70.37231972
ABB00 1 15.999 6.7627 0.000545055 864.9744769
ABA00 2 16.1774 6.9411 0.000455997 1033.906887
ABBDD 2 16.2228 6.9865 0.000435758 1081.928093
AAA00 3 16.6412 7.405 0.000286743 1644.184836
ABADD 3 16.908 7.6718 0.000219595 2146.942466
AAADD 2 17.4748 8.2385 0.000124597 3783.860259
ABBDE 3 17.747 8.5108 9.49E-05 4968.136008
ABADE 3 18.2228 8.9865 5.90E-05 7994.427376
AAADE 4 19.6666 10.4302 1.39E-05 33867.12301
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