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Abstract Carnivorous pitcher plants host diverse microbial
communities. This plant–microbe association provides a
unique opportunity to investigate the evolutionary process-
es that influence the spatial diversity of microbial commu-
nities. Using next-generation sequencing of environmental
samples, we surveyed microbial communities from 29
pitcher plants (Sarracenia alata) and compare community
composition with plant genetic diversity in order to
explore the influence of historical processes on the
population structure of each lineage. Analyses reveal
that there is a core S. alata microbiome, and that it is
similar in composition to animal gut microfaunas. The
spatial structure of community composition in S. alata
(phyllogeography) is congruent at the deepest level with
the dominant features of the landscape, including the
Mississippi river and the discrete habitat boundaries that
the plants occupy. Intriguingly, the microbial community
structure reflects the phylogeographic structure of the
host plant, suggesting that the phylogenetic structure of
bacterial communities and population genetic structure of
their host plant are influenced by similar historical
processes.

Introduction

The integration of ecosystem genetics, phylogenetics, and
community ecology has provided important insights into
the diversity, assembly, evolution, and functionality of
communities [1–5]. By exploring ecosystems in an evolu-
tionary framework, investigators can measure genetic
interactions across variable temporal and spatial scales
and gain insight into fundamental processes such as food
web dynamics and nutrient cycling [1, 3, 4]. Studies
integrating these fields initially focused on the genetics of
plant species that supply a variety of important resources
and environmental structure to other organisms in the
ecosystem [6]. An intriguing extension of these studies,
and an important opportunity for community geneticists, is
to further investigate community level responses to host–
plant genetic variation. Of particular interest are the
associations of plants and their symbiotic microbiota.

The interface between aerial plant surfaces and the
environment represents an enormous potential habitat (~1
billion square kilometers of leaves worldwide; [7]) for a
variety of organisms and as such represents an extraordi-
nary opportunity to study community diversity and its
evolution. Thus, more recent efforts have incorporated
intraspecific plant genetic variation with associated com-
munity membership [5, 8–11]. Despite the fact that
microbes are the most frequent and abundant inhabitants
of aboveground leaf surfaces [12, 13], mediate important
ecosystem processes [14, 15], and have long played a
critical role in ecological research (reviewed in [16]),
investigations into complex and species-rich bacterial
communities in nature have been hampered, until very
recently, by several technical and theoretical limitations [17,
18]. These restrictions have constrained our capability to
identify patterns of bacterial community structure as well as

Electronic supplementary material The online version of this article
(doi:10.1007/s00248-011-9832-9) contains supplementary material,
which is available to authorized users.

M. M. Koopman :B. C. Carstens (*)
Department of Biological Sciences, Louisiana State University,
Baton Rouge, LA 70803, USA
e-mail: carstens@lsu.edu

Present Address:
M. M. Koopman
Department of Biology, Eastern Michigan University,
Ypsilanti, MI 48197, USA

Microb Ecol (2011) 61:750–758
DOI 10.1007/s00248-011-9832-9

http://dx.doi.org/10.1007/s00248-011-9832-9


our ability to determine the mechanistic processes that drive
these patterns [19]. Recent technological advances, including
next-generation sequencing of environmental samples, pro-
vide a unique opportunity to investigate the processes that
drive biogeographical patterns in microorganisms [20–23].
Here, we exploit these advances and seek to characterize the
structure of microbial communities associated with the
carnivorous plant Sarracenia alata (Sarraceniaceae).

It is clear that microbial populations exhibit spatial
patterns [24–26]. Bacterial community membership can be
clustered geographically, indicating that dispersal limitation
is an important force in structuring communities [27, 28].
Dispersal limitation is a convenient explanation in micro-
bial systems defined by abiotic features, such as deep sea
thermal vents or hot springs [25, 27]. When dispersal
limitation is not evident, differences in the contemporary
environment are thought to be the principal factor in
generating spatial discontinuity (i.e., the Baas-Becking
hypothesis) [29]. However, many microbial communities
are closely associated with eukaryotic species, and in these
eukaryotes, generations of biogeographic research indicate
that historical processes (e.g., habitat fragmentation, isola-
tion on either side of environmental barriers) play a key role
in explaining eukaryotic distributions [30]. Therefore, the
historical processes that shape eukaryotic biogeography
could influence the biogeographic patterns of their micro-
bial communities [31, 32]. Whereas the role of historical
processes in microbial biogeography remains unclear,
several researchers have posited that geographic isolation
and subsequent neutral divergence could influence micro-
bial systems [27, 33, 34].

By comparing microbial assemblages in S. alata across
space, we aim to identify the factors that influence their
compositional structure. The modified pitcher-shaped
leaves of S. alata provide an ideal habitat in which to
investigate microbial biogeography because each leaf
(pitcher) contains a diverse microbial community [35–38]
that are restricted to a defined space and are distinct from
the surrounding environment [38]. Furthermore, some
microbes that inhabit S. alata pitchers provide important
services to the plant, including prey decomposition [39] and
nutrient mineralization and fixation [40]. This intimate
plant–microbe association provides an opportunity to test
the central concept of microbial biogeography. If microbial
communities cluster by habitat, then we anticipate that there
will be a broad similarity in the bacterial communities
sampled from different populations of plants given that
plant populations exhibit no visible signs of local adapta-
tion [41]. If, instead, dispersal limitation is important, then
we expect to uncover a clear signature of isolation by
distance (IBD), particularly since the eastern and western
populations of S. alata are separated by the Atchafalaya
Basin, one of the largest swamps in the world and a habitat

that is substantially different from the pine savannahs that
the plants inhabit.

In Louisiana (U.S.A), historical habitat fragmentation
has produced substantial population genetic structure in S.
alata [42] (Fig. 1a). Koopman and Carstens [42] conducted
an extensive phylogeographic investigation of the species
using microsatellites and DNA sequence data. STRUCTURE
[43] and STRUCTURAMA [44] were used to infer population
structure of five plant populations across the state. Both
assignment tests indicate that genetic populations largely
correspond to sampled populations, and that the deepest level
of population genetic differentiation, was identified when
populations were divided on either side of the Mississippi
River (K=2; using the Δk metric [45]). An analysis of
molecular variance [46] was consistent with these findings;
highly significant (P<0.001) structure was detected at both
the regional (i.e., east–west) and local (i.e., population) scale.
Tests of IBD indicate a significant positive correlation
between geographic distance and genetic differentiation (P=
0.0001). Together, these results indicate that populations of S.
alata are structured at the deepest level by the Mississippi
River and at a finer scale by the boundaries of the distinct
habitat occupied by the plant [27]. Given the important role
of at least some bacteria for the plant, habitat fragmentation
and isolation on either side of the Mississippi River could
shape the distribution of bacterial communities associated
with S. alata. In this case, we predict that bacterial
community composition would mirror the pattern of diver-
sification of plant populations. Alternatively, other neutral
processes such as dispersal or transmission by arthropod
vectors could contribute to the structuring of microbial
communities, in which case we would not expect them to
reflect the population genetic structure of the plants.

Material and Methods

Sampling

We surveyed pitcher plant-associated microbial communi-
ties using a high throughput pyrosequencing approach.
Pitcher plants and their fluid contents were collected from
four populations throughout the distribution of S. alata in
Louisiana during the summer of 2009 (Table 1). Plant tissue
and associated fluid was obtained from three to six plants
per population; two populations on either side of the
Mississippi River were sampled (Fig. 1). Samples were
collected 3 and 4 months after the opening of leaves to
ensure similar leaf developmental stage and microbial
community age. These months also harbor the most diverse
bacterial communities in S. alata [38]. Fluid was drained
from pitchers into sterile collecting tubes and refrigerated
until extracted. Given the invasiveness of this collection
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procedure, individual pitchers could not be repeatedly
sampled. All fluid extractions were performed within 24 h of
collection following Koopman et al. (2010). Six hundred
microliters of well-vortexed pitcher fluid (excluding macro-
parts of insects) from each sample were centrifuged (to
concentrate bacterial cells) into 300-μL aliquots (if less than
600 μL of fluid was available, that volume was used).
Extractions were executed using the 2 mL bead-beating tube
containing beads from the Powersoil DNA Isolation kit
(MoBio; Madison, WI); directions were followed exactly.

Amplification and Pyrosequencing

The biogeographic pattern of the diverse microbial com-
munity associated with S. alata was characterized using
PCR and deep sequencing of the 16S rRNA gene. Though
partial 16S sequences often lack the variation necessary to
resolve fine scale biogeographic patterns in microbes
(Jaspers 2004) and are not suitable to reconstruct phylog-
enies at the individual level, these short gene fragments are
a valuable tool for accurately identifying community

membership to the family level (Cardenas 2008, Ribosomal
Database Project (RDP) site). Horner-Devine et al. (2004)
argue that if spatial structure is observed using 16S even
stronger patterns are likely to be resolved using finer scale
markers level while Parnell et al. [47] demonstrated that
16S genes have similar biogeographic patterns to particular
genes functioning in methanogenesis across a small spatial
area (the Great Salt Lake). The extracted contents of 29
individual pitchers were used as template. The forward
primer (5′-3′) included the 454 Life Sciences primer B
(GCCTTGCCAGCCCGCTCAG), the broadly conserved
microbial primer 27F and a two-base “TC” linker sequence.
The reverse primer (GCCTCCCTCGCGCCATCAG
NNNNNNNNNNNNCATGCTGCCTCCCGTAGGAGT)
contained the 454 Life Sciences primer A (GCCTCCCT
CGCGCCATCAG), the bacterial primer 338R (TGCTGCC
TCCGTAGGAGT), a “CA” inserted as a linker between the
barcode and the rRNA primer and a unique 12-bp error
correcting Golay barcode (bolded in primer) [48]. PCRs
were performed in 20-μL reactions: 1× Phusion High
Fidelity Buffer (Finzyme, Finland), 2.5 μM Phusion MgCl2

Figure 1 Congruence of
population genetic structure
between the carnivorous plant
S. alata and their diverse
microbial communities.
a Population genetic structure
of S. alata [42] from four pop-
ulations throughout Louisiana
(shown as a cladogram). Genetic
structure is organized primarily
by the Mississippi River
(Evanno’s ΔK=2). Consistent
with the AMOVA results,
Bayesian simulations further
assigned individuals to clusters
that correspond to sampling sites
(K=4). b Hierarchical clustering
of microbial populations.
Numbers in colored boxes are
the number of unique sequences
in the composite population, bar
represents unweighted UniFrac
distance of 0.05, (asterisk)
jackknife values >99.9%
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(Finzyme, Finland), 0.25 μM each primer, 0.5 μM each
dNTP, 0.3 U Phusion High-Fidelity Taq Polymerase
(Finzyme, Finland), and 1–10 ng DNA. PCR conditions
were as follows: 98°C for 2 min; 26 cycles of 98°C for
10 s, 53°C for 10 s, 53°C for 30 s; with a final extension at
72°C for 10 min. Three replicate PCRs were performed.
Replicate reactions were pooled and cleaned with a Qiagen
PCR Purification Kit (Valencia, CA). DNA was quantified
on a ND-1000 spectrophotometer (NanoDrop, Wilmington,
DE). Sequencing was conducted at ENGENCORE (University
of South Carolina, Columbia) using their 454 Life Sciences
Genome Sequencer FLX (Roche) machine.

Sequence Analysis and Tree Construction

The sequence dataset was trimmed to yield sequences >150 bp
with quality scores >20 using the RDP’s Pyrosequencing
Pipeline’s initial processing function. Filtered sequences
were assigned to pitcher by their unique barcode. Within
each pitcher, all sequences were aligned using the data
processing RDP Aligner function. Sequences were clustered
at a minimum distance (0.01 dissimilarity; max distance, 1.0;
step size, 0.2) in order to remove identical sequences using
the RDP Dereplicate function. All representative operational
taxonomic unit (OTU) sequences were renamed with a
pitcher ID, pooled, aligned, and clustered with a maximum

distance of 93% sequence similarity. FastTree v. 2.1.1 [49]
was used to construct an approximate maximum likelihood
phylogenetic tree for this reduced dataset (19,285 sequences;
identical sequences removed within pitchers) using a GTR
model of sequence evolution and a single rate for each site,
this tree was rooted with several archaeal sequences. All
sequences were classified using the classification algorithm
[50] in RDP Classifer at an 80% confidence rate and RDP
taxonomic nomenclature.

Quantifying Diversity

Alpha diversity within communities was evaluated with
rarefaction (Table 1), Analyses of Similarity (ANOSIM) and
phylogenetic methods. ANOSIM analyses were imple-
mented in PRIMER-E [51] to summarize patterns in species
composition (and abundance) at four taxonomic ranks
(class, order, family, genus) using permutation-based
hypothesis testing and a Bray–Curtis similarity matrix
(Table 2). This analysis statistically tests whether two or
more sample groups are statistically different; if two groups
differ in their species composition then the similarities within
groups should be larger than between them. The significance
of R is assessed by permuting group assignment to obtain a
distribution of R under the null model. We tested the
following null hypotheses of community composition: no

Table 2 Analyses of microbial community structure at four taxonomic ranks using Mantel and ANOSIM tests

Mantel tests A correlation between microbial community structure and geographic distance (isolation by distance) and B correlation between plant
genotype and microbial community structure (presence/absence matrix using a Bray–Curtis similarity index) and UniFrac distance (pairwise
distance matrix prepared in Fast UniFrac). Ten thousand permutations were conducted for each comparison. ANOSIM results: permutation-based
hypothesis testing and Bray–Curtis similarity matrices were used to compare microbial communities over several categorical divisions from two
data partitions: presence/absence (above the line) and abundance (below the line). A higher R value indicates that two communities are more
differentiated. Outlined box and shaded box indicate significance using only “rare” (non-ubiquitous) phylogroups for abundance and presence/
absence datasets, respectively

*P<0.05; **P<0.009, the p value is analogous to a univariate ANOVA and was assessed with 999 permutations
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difference between populations, between time points, be-
tween populations at each time point, between the east and
west, and between east and west at each time point. ANOSIM
tests were repeated with ubiquitous OTUs (those present in
every sample) removed in order to investigate whether these
frequent sequences were biasing the results (Table 2).

The phylogeny-basedmetric UniFrac [52], implemented in
Fast UniFrac (http://bmf2.colorado.edu/fastunifrac/index.
psp), was used to compare microbial communities in a
phylogenetic framework. Randomizations of population
assignment were used for each significance test. Groups were
defined as pitchers (29 sample units; not shown), populations
(four sample units) and populations together with time (eight
sample units). The probability (assessed as UniFrac signifi-
cance) that each population has more unique branch lengths
than expected was measured for each population assignment
using 1,000 permutations (Table 3). In order to determine the
probability that population structure on the tree differs
significantly from chance, tips were randomly reassigned to
populations and the degree of branch lengths unique to one
environment versus the degree of shared branch lengths was
compared in a pairwise fashion (Table 3). P values for
UniFrac significance and the p test were corrected for
multiple comparisons using Bonferroni correction.

Similarity (presence/absence) matrices of microbial com-
position were produced at four taxonomic ranks (class, order,
family, genus) across all pitchers. A fifth matrix was produced
using UniFrac distances. IBD as well as the significance of
UniFrac distance on geographic distance between sample
pairs was tested using a Mantel test [53] with 10,000
permutations. These same microbial matrices were further
tested against host–plant genetic similarity [42].

Results

We generated a dataset of 383,660 high-quality microbial
16S rRNA gene sequences with a mean of 13,230±4,406

(SD) sequences per pitcher (N=29) and an average read
length of 218 bp (Table 1). Eleven phyla were recognized
across all pitchers; however, three dominate and represent
97% of total sequences: Firmicutes (11.1%), Bacteroidetes
(21.6%), and Proteobacteria (64.3%). Representatives of
these phyla and Actinobacteria, were present in every
pitcher sampled (SI Table 1). These four phyla are among
the most prevalent phyla in the human gut [54], and likely
play a role in mineral and nutrient assimilation for the plant.
Sixty-five percent and 46% of sequences assigned to class
and order, respectively, were found in all pitchers, and three
families (Enterobacteriaceae, Comamondaceae, Pseudomo-
nadaceae) were present in every sample (SI Table 1).
Despite these commonalities, phylotype diversity varied
between individual pitchers as well as populations (Table 1).
Between 198 and 829 phylotypes (defined as ≤3%
sequence divergence) were identified in each pitcher (mean
phylotypes/pitcher=383). The average number of phylo-
types per population ranged from 299 to 494 (Table 1).

Mantel tests were used to examine the correlation of
geographic distance on microbial community composition
at four taxonomic levels (class, order, family, genus).
Similar tests were employed to test for correlations between
plant genetic diversity and microbial community composi-
tion. In no case were results significant (P>0.5 in all tests;
Table 2). An ANOSIM was implemented to summarize
patterns in species composition at four taxonomic ranks
(class, order, family, genus). The global R statistic from
ANOSIM was never significant when partitioned by popula-
tion or time alone indicating that there were no significant
community compositional differences between populations
or sampling month at any taxonomic level (Table 2).
Together with Mantel tests, these data strongly suggest that
dispersal limitation cannot explain the observed pattern and
that there are no substantial compositional differences
among populations. Rather than revert to the Baas-
Becking explanation, we explored the relationship between
plant population structure and bacterial community compo-
sition in a phylogenetic framework.

The UniFrac metric [52] was used to compute the
phylogenetic distance between microbial pitcher communi-
ties measured as the proportion of branch lengths that lead
to descendants in one population but not the other.
Randomizations of population assignment were used to
test for significance. Within populations, community
composition did not vary significantly between pitchers or
between time points (Fig. 2). Phylogenetic distance
between each pair of populations, however, differed
significantly (Bonferroni-corrected UniFrac significance
and P test <0.001 for each comparison; Table 3) and
microbial composition varied more between populations
than within them (Fig. 2). Furthermore, plant populations
on either side of the Mississippi River harbor microbial

Table 3 Results from UniFraq analyses for microbial community
comparisons from the four distinct pitcher plant populations (Popula-
tion) or for samples defined as populations from each time point (Time
1, Time 2). Values that are significant after Bonferroni correction are
shown as bold text.

Population Time 1 Time 2

A <1.0e-03 0.761 <1.0e-03

L 0.001 0.032 0.206

C <1.0e-03 0.218 0.002

K 0.001 0.032 0.206

A Abita Springs Flatwoods Preserve, L Lake Ramsey Savanna
Wildlife Management Area C Cooters Bog, Kisatchie National Forest;
K Goldana, Kisatchie National Forest
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communities that differ significantly in abundance at the
class and ordinal delineation (Table 2; Fig. 2). A distance
matrix was calculated for all pairwise combinations of
populations on a tree from which hierarchical clustering of
UniFrac distances with UPGMA produced a well-supported
tree (Fig. 1b). The microbial contents of pitchers exhibit
clear biogeographic patterns are clustered to either side of
the Mississippi River and are congruent with that of the
host plant’s current population structure. The probability
of this degree of similarity in two rooted phylogenetic
trees is <0.005 [55].

Whereas a significant pattern of IBD was recovered
between plant populations in our study of the plants [42],
we find no evidence for IBD (Table 2) in associated
microbial communities, although the limited geographic
distances in this study likely reduce the power to discern
such associations. We hesitate to rely on environmental
selection alone to explain the spatial patterns we observe.
While local adaptation could be a factor, there are no fixed
morphological differences between sampled populations
of S. alata [41], and it is difficult to isolate and identify
selective pressures for hundreds of bacterial lineages.
Rather, we propose that historical events are at least
partially responsible for observed differences in microbial
composition. Microbial populations associated with S.
alata share a remarkably similar microbial fauna domi-
nated by three phyla (SI Table 1), but the collective
microbial community contained within each plant popula-
tion differ significantly (Fig. 1; Tables 2 and 3). The
probability that population structure on the tree is
significantly different than chance using UniFrac analyses
for samples defined as four distinct pitcher plant popula-
tions (or as populations from each time point) is P<0.001
for every comparison (not shown). Microbial communities
are structured primarily across the Mississippi River
(Figs. 1b and 2; Table 2). Plant genetic data [42] indicate
that the dominant pattern of microbial community diver-
sity in the pitchers reflects that of the plant genetic
diversity (Fig. 1).

Discussion

The Baas-Becking hypothesis is difficult to test [56].
Microbes can influence their local environment [57] and
respond to its inherent selective pressures. For any specific
bacterium, it is difficult to isolate environmental variation
that influences abundance. For bacterial communities
within a pitcher, with hundreds of bacterial phylotypes,
this endeavor would prove challenging. Consequently, it is
difficult to distinguish between environmental effects on
the community and the reverse. If IBD can be rejected, and
the Baas-Becking explanation is difficult to falsify, then the
challenge for microbial ecologists is to identify other
factors that influence microbial diversity. In Sarracenia,
bacterial abundance has not been correlated with specific
environmental predictors [58], and species interactions
likely account for some of the spatial variation among
microbial communities [35–37]. Further, interactions within
the pitcher extend far beyond bacterial–bacterial interaction
because pitchers also contain living arthropod, yeast,
protozoan, nematode, and algal populations [35, 59, 60]
that each differ in terms of their abundance, ecological role,
generation time, and mode of dispersal. While we acknowl-
edge that chance, geography and some degree of biologically
linked dispersal limitation are likely drivers of microbial
community structure in S. alata, these additional options do
not detract from the fact that the community phylogeo-
graphic structure of the microbiome mirrors that of its host
plant. This is remarkable given that each member of the
microbial community has its own unique evolutionary
history, genetic architecture, and response to host–plant
genetic variation.

Though our sampling represents a snapshot of commu-
nity structure in contemporary populations (single aliquots
from each leaf in a single season) the results reflect
evolutionary processes acting over a substantial time period
[3, 61]. Historical processes are important determinants of
biogeographic patterns for eukaryotes; here, we argue that
habitat fragmentation and subsequent isolation can similar-
ly influence bacterial communities. These processes are
most easily recognized for microbial communities that are
associated with eukaryotic species; in S. alata, isolation on
either side of the Atchafalaya basin and the Mississippi
River [42] represents a key driver of bacterial community
structure. Plant genetic variation can significantly affect
communities [1, 5, 11, 62–64], and the genetic pattern of
pitcher plant population divergence accurately predicts the
microbial community’s biogeographic structure. While
there is no evidence that genetic diversity in individual
plants is significantly correlated to microbial composition
(Table 2), cluster analyses indicate that the pattern of
variation in bacterial community composition mirrors that
of its host plant differentiation (Fig. 1a, b; Table 3) and
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suggests that both are influenced at the deepest level by the
Mississippi River. This work demonstrates that biogeographic
analyses, when they are not limited to particular taxonomic
groups, can identify landscape processes that are important in
shaping the evolution of all members of a community.

Pitcher plants are excellent model systems [65] for
studying community genetics and metacommunity structure
of microbial diversity due to the taxonomic diversity of
contained within pitcher plants [66], the small size of their
microcosms, and the diverse communities with several
trophic levels that can repeatedly be sampled across time
and space [35, 36, 38]. This complex plant–microbe
interaction provides a unique opportunity to further develop
hypotheses about the causal mechanisms that influence the
biogeographic structure of microbial communities. Further-
more, we have only begun to describe the microbes that
inhabit carnivorous plants, and decipher their role in the
evolution of plant carnivory. Our findings offer a unique
perspective into the evolutionary necessity and functional
roles of microbes in eukaryotic digestive systems and to the
essence of these symbioses. However, since Enterobacteria
represent the majority of the bacteria in pitchers from across
the range of S. alata (SI Table 1) and dominate the bacterial
community that is ubiquitous to S. alata’s pitchers (SI
Fig. 1), we strongly suspect that our understanding of
community composition and function will be incomplete
until we investigate the bacterial communities associated
with the arthropods that interact with S. alata as prey,
parasites, or symbionts.
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