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Abstract.—Growing evidence supports the idea that species can diverge in the presence of gene flow. However, most methods
of phylogeny estimation do not consider this process, despite the fact that ignoring gene flow is known to bias phylogenetic
inference. Furthermore, studies that do consider divergence-with-gene-flow typically do so by estimating rates of gene flow
using a isolation-with-migration model (IM), rather than evaluating scenarios of gene flow (such as divergence-with-gene
flow or secondary contact) that represent very different types of diversification. In this investigation, we aim to infer the recent
phylogenetic history of a clade of western long-eared bats while evaluating a number of different models that parameterize
gene flow in a variety of ways. We utilize PHRAPL, a new tool for phylogeographic model selection, to compare the fit
of a broad set of demographic models that include divergence, migration, or both among Myotis evotis, M. thysanodes and
M. keenii. A genomic data set consisting of 808 loci of ultraconserved elements was used to explore such models in three
steps using an incremental design where each successive set was informed by, and thus more focused than, the previous
set of models. Specifically, the three steps were to (i) assess whether gene flow should be modeled and identify the best
topologies, (ii) infer directionality of migration using the best topologies, and (iii) estimate the timing of gene flow. The
best model (AIC model weight ∼0.98) included two divergence events ((M. evotis, M. thysanodes), M. keenii) accompanied
by gene flow at the initial stages of divergence. These results provide a striking example of speciation-with-gene-flow in an
evolutionary lineage. [Myotis bats; PHRAPL; P2C2M; phylogeographic model selection; speciation with gene flow.]

Species can diverge in spite of gene flow (e.g.,
Jónsson et al. 2014). Growing evidence shows that gene
flow does not necessarily stop instantly or completely
during speciation (Nosil 2008; Pinho and Hey 2010),
but can continue to occur as lineages diverge (e.g.,
Papadopoulos et al. 2011; Martin et al. 2013). The growing
realization that gene flow can occur among diverging
lineages implies not only that phylogenetic studies of
closely related clades should not ignore this process,
but also that they should consider the geographic
ranges occupied by the diverging lineages, since the
presence of gene flow implies that individuals from
these lineages have come into physical contact. Failure to
account for interspecific gene exchange when estimating
a species tree may result in biased estimates of topology,
divergence time, and population size (Eckert and
Carstens 2008; Leaché et al. 2014). For example, if some
of the shared polymorphism among lineages results
from gene flow, divergence times may be underestimated
and effective population sizes may be overestimated
when this polymorphism is attributed to incomplete
lineage sorting (e.g., Leaché et al. 2014). This places
empiricists in a difficult position, because the methods
that co-estimate population divergence and gene flow
(e.g., Hey 2010) require a known topology, but since
approaches to species tree inference do not account for
gene flow, the estimates from these methods may be
inaccurate if alleles that result from gene flow are present
in the data. Furthermore, because many evolutionary
processes can generate gene tree discordance (such as
gene flow, incomplete lineage sorting, hybridization
and/or errors in phylogenetic reconstructions; Knowles

and Kubatko 2010), it is difficult to identify whether
shared polymorphism among lineages is due to either
retained ancestral polymorphism or gene flow (Slatkin
and Maddison 1989), even when both processes are
considered.

Co-estimating gene flow and species trees is a difficult
task due to the large number of possible parameters
in model space. For a system of three lineages (either
populations or species), possible models include the
fully resolved trees and no gene flow (three possible
topologies), or each of these trees containing up to eight
migration parameters each for present and ancestral
gene flow (combination of these parameters results in
877 models per topology). If one is also willing to
consider that no divergence has occurred (if there is no
evidence of coalescence, i.e., n-island or partial island
models), or that divergence occurred simultaneously
(i.e., a polytomy), the total number of models that
consider all possible topologies, divergence events, and
migration parameters would surpass 128,600. As taxa
are added, this number increases factorially. Given that
no full likelihood method exists for jointly estimating
all relevant parameters, here we adopt complementary
approaches to, first, evaluate the fit of the species
tree model to our data, and second, to identify the
specific model(s) that offer the best fit. First, we
assess the statistical fit of the multispecies coalescent
model (MSCM) to our genomic data using P2C2M
(Gruenstaeudl et al. 2015). Second, we utilize PHRAPL,
a model selection framework developed by Jackson
et al. (forthcoming) to evaluate the statistical fit of
models that include both divergence and gene flow to
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the empirical data set. Our explicit consideration of
model fit allows us to jointly estimate the phylogenetic
relationships and gene flow in a taxonomically
complex system, the western long-eared bats of North
America.

MYOTIS BATS

The genus Myotis is among the most speciose
mammalian genera, with more than 100 living species
distributed worldwide (Simmons 2005). Myotis species
in the New World are part of a monophyletic group
that diverged around 10–15 Ma from European and
Asian lineages (Stadelmann et al. 2007). Phylogenetic
relationships and species boundaries among many New
World Myotis species are controversial, mostly due to
cryptic morphological variation and poor sampling in
phylogenetic studies (Bickham et al. 2004; Larsen et al.
2012; Ruedi et al. 2013). Consequently, some species are
difficult to identify in the field due to morphological
similarities that are not necessarily indicative of
common descent (e.g., Ruedi and Mayer 2001; Dewey
2006). Phylogenetic studies using mitochondrial DNA
(mtDNA; cytochrome B) and nuclear (Rag2) loci suggest
that Myotis bats consist of geographically delineated
lineages with unclear morphological differences among
some species (Ruedi and Mayer 2001; Stadelmann et al.
2007). Ruedi and Mayer (2001) suggested that Myotis bats
are prone to evolve into sets of similar ecological and
morphological niches wherever they occur.

Despite a substantial effort to infer relationships
and species limits among many Myotis species,
important questions remain regarding the patterns of
phylogeographic diversity, species boundaries, as well
as the evolutionary processes that promote divergence
in this group. Of particular interest is the mode
of speciation that has prevailed (i.e., sympatric vs.
allopatric) during the evolution of Myotis. Even though
geographic barriers such as deserts, sea channels, or
mountain ranges may reduce dispersal and promote
strong genetic structure between some species (e.g.,
Castella et al. 2000), other species are largely distributed
along heterogeneous biomes, sometimes in sympatry.
For example, the western long-eared Myotis complex is
found across most of North America. Myotis evotis and
M. thysanodes have extensive ranges from northwestern
USA to central Mexico, and may co-occur in part of
their distribution (Fig. 1). Myotis keenii has a small
distribution in coastal areas of the Pacific Northwest, but
it may also co-occur with M. evotis and M. thysanodes,
especially in the southern and southeastern part of
its distribution (Fig. 1). Inferring species relationships
among the western long-eared bats has been a challenge
for evolutionary biologists. For instance, Stadelmann
et al. (2007) used Rag1 and cytochrome B and one
individual per species to estimate a phylogeny of Myotis
bats; their results showed that M. evotis and M. keenii
are sister species which form a group that is sister to
M. thysanodes. Larsen et al. (2012) later confirmed this

topology by sampling cytochrome B from Neotropical
Myotis species (1–3 individuals per species). Dewey
(2006) extensively sampled cytochrome B from across
the entire distribution of these three taxa in North
America and estimated a topology in which M. keenii
is sister to the group M. evotis–M. thysanodes. However,
she also observed that relationships among M. evotis,
M. thysanodes and M. keenii were paraphyletic and
inferred that mitochondrial introgression had occurred
among species (at least in cytochrome B), despite they
being morphologically distinct. Carstens and Dewey
(2010) added multilocus data from six anonymous
nuclear loci to the data set analyzed by Dewey (2006),
and their results showed that although M. evotis,
M. thysanodes and M. keenii form a single monophyletic
group, they are paraphyletic with each other at multiple
loci, which is likely in part due to rampant gene flow
among these lineages. The sister species of this complex
is believed to be M. lucifugus (e.g., Stadelmann et al.
2007; Carstens and Dewey 2010; Larsen et al. 2012) and
it is estimated that most of the diversification within
M. lucifugus/western long-eared Myotis group occurred
during the Pleistocene (between 1–1.5 Ma; Carstens and
Dewey 2010; Ruedi et al. 2013).

Although the paraphyletic patterns observed in the
western long-eared bats complex have been assumed to
result from introgression, gene flow was not explicitly
considered in any of the aforementioned studies. Thus,
in this study we apply a model selection framework to
a new genomic data set in order to infer relationships
among M. evotis, M. thysanodes and M. keenii while also
explicitly accounting for the presence of gene flow.

METHODS

Sampling
Tissue samples were acquired from all western long-

eared bat species from across the ranges of these
species, including sympatric zones (i.e., individuals
collected at the same locality; Fig. 1; Supplementary
Table S1 available on Dryad at http://dx.doi.org/
10.5061/dryad.b0q2g). Some of the samples were
donated by museum collections (Supplementary Table
S1 available on Dryad). Our sampling included 80
individuals from M. evotis (34), M. thysanodes (20),
M. keenii (12), and M. lucifugus (14), with the latter
chosen as an out-group based on results from Carstens
and Dewey (2010), who found that M. lucifugus is sister
to the western long-eared complex. To identify each
species, the Mammal Species of the World classification
was followed (Simmons 2005), which is typically based
on descriptions of body measurements and fur color
variation. All specimens included in this study were
carefully identified in the field and confirmed by T.
Dewey at the University of Michigan Museum of
Zoology or by curators at museum collections (see
Dewey (2006) and Supplementary Table S1 available on
Dryad).

http://dx.doi.org/10.5061/dryad.b0q2g
http://dx.doi.org/10.5061/dryad.b0q2g
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FIGURE 1. Map showing the distribution of the western long-eared bats—Myotis evotis, M. thysanodes, and M. keenii. Circles, squares, and
triangles represent sampling localities per species. Detailed information for all localities and samples can be found in Supplementary Table S1
available on Dryad).

Capture Probe Design
A set of 2560 probes for UCE was previously designed

to infer phylogenetic relationships among placental
mammals (McCormack et al. 2012). To increase the
applicability of this probe set to Myotis species, we
aligned probe sequences with the M. lucifugus genome
(Ensembl release 59; Flicek et al. 2014) using LASTZ
v.1.03.54 (Harris 2007) and retained 1608 sequences that
shared at least 92.5% identity across 100 or more base
pairs. Duplicate sequences were discarded such that our
final UCE probe set contained 1573 sequences of 120 bp

each. A customized sequence capture probe library was
purchased from MYcroarray, Inc (Ann Arbor, USA).

Library Preparation and Sequencing
Genomic DNA was isolated using a DNeasy blood and

tissue kit (QIAGEN). To increase the amount of DNA
in some of our samples, whole genome amplification
was performed using REPLI-g kits (QIAGEN). DNA
was fragmented using an Ultrasonic Processor (Fisher
Scientific) to size distribution of 400–600 bp. TruSeq
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libraries were prepared using KAPA library kits (Kapa
Biosystems) and custom dual indexes (i.e., adapters)
with unique combinations were ligated to each sample.
Eight samples per pre-enrichment library were pooled
at equimolar concentrations. During the enrichment, the
protocol provided by MYcroarray was followed, which is
based on the workflow described by Gnirke et al. (2009).
Post-enriched libraries were pooled at equimolar ratios.
The final library was sequenced at the Georgia Genomics
Facility using a full lane of an Illumina NextSeq 150 bp
paired-end Mid Output Flow Cell run.

Contigs Assembly, Mapping, and Haplotype Reconstruction
Raw reads were demultiplexed using Casava

(Illumina, Inc.) and a custom Perl script (available
as Supplemental Material on Dryad). To assess the
quality of the reads and trim the adapters, we followed
the Illumiprocessor workflow described by Faircloth
(2013). Illumiprocessor uses Trimmomatic v.0.32 (Bolger
et al. 2014), which trims adapter contamination from
reads, and generates de novo consensus contigs in each
sample using VelvetOptimizer v.2.2.5 (http://www.
vicbioinformatics.com/software.velvetoptimiser.shtml,
last accessed May 11, 2015), which runs as a wrapper
script for the Velvet assembler v.1.2.09 (Zerbino and
Birney 2008). To increase the length of our target UCEs
loci, we identified the coordinates of each UCEs probe
in the M. lucifugus genome, and extracted sequences
with 500 bp extra on each side. Consensus contigs
were then aligned to UCEs target loci using LASTZ
(Harris 2007). Any contigs that did not match the target
UCEs locus or that matched more than one locus were
removed. Retained contigs were mapped against an
index of target UCEs loci, using BWA-MEM v. 0.7.8-r455
(Li and Durbin 2009). Individual consensus sequences
were generated using SAMTools v.0.1.19 (Li et al. 2009).
Files were imported from SAM to BAM format, sorted,
and indexed. Files in VCF and FASTQ format (with
hard-masked, low-quality bases <Q20) were then
generated and seqtk was used to covert output-masked
FASTQ files to FASTA (https://github.com/lh3/seqtk,
last accessed May 11, 2015).

Each locus was aligned using MAFFT v7.123b (Katoh
and Standley 2013). To remove sites with >50% of
missing data, each locus was filtered using mothur
v.1.34.4 (Schloss et al. 2009). To resolve gametic phase
in multiple heterozygous sites, PHASE v.2.1.1 was used
(Stephens et al. 2001; Stephens and Donnelly 2003). After
phasing, we realigned each locus and removed sites in
which gametic phase resolution was not possible (at 80%
accuracy). PGDSpider v.2.0.8.2 (Lischer and Excoffier
2012) was used to convert FASTA files to many different
formats (e.g., nexus, phylip).

Summary Statistics
To assess the level of polymorphism of phased and

filtered UCEs, population genetic summary statistics

were calculated for each locus and species using DnaSp
v.5.10.1 (Librado and Rozas 2009). We analyzed only
those loci that were amplified in at least five individuals
per species across all loci. Overall, 808 UCEs were
used (unless otherwise noted) to estimate the total
number of segregating sites (S), number of haplotypes
(Hap), haplotype diversity (Hd), nucleotide diversity
(�), Watterson’s �, and Tajima’s D.

Species Tree Reconstruction and MSCM Fit Evaluation
We utilized *BEAST v.1.8.1 (Heled and Drummond

2010; Drummond et al. 2012) to estimate the posterior
distribution of gene trees and the species tree. When
the complete data set of 808 loci was analyzed, we were
unable to obtain results from *BEAST in a reasonable
amount of time (less than 8 weeks). Therefore, we
independently analyzed 10 sets of 50 loci chosen at
random. This number was chosen based on exploratory
analyses using our data as well as on previous studies
that have suggested 50 loci as an upper threshold for
*BEAST (e.g., O’Neill et al. 2013). All analyses included
at least three individuals per in-group species and at
least two out-group (M. lucifugus) samples. We used
PhyML (Guindon and Gascuel 2003) to estimate models
of sequence evolution for each locus. However, to reduce
the number of parameters during tree estimation we
decided to use a HKY model (transition/transversion
rate ratio plus distinct frequencies for each nucleotide)
for all loci as this model was found to be representative.
For all loci, base frequencies were set to empirically
estimated values and a strict molecular clock was
assumed with a fixed rate of 1.0. The settings used for all
*BEAST analyses were as follows: a Yule process on the
species tree prior with a random starting tree, improper
priors for species.popMean and species.yule.birthRate,
100 million generations sampled every 10,000 steps and
a burn-in of 10%. MCMC convergence and independent
sampling of generations were assessed in Tracer v.1.6
(Rambaut et al. 2014). Maximum clade credibility trees
were built using Tree Annotator v.1.8.1 (Heled and
Drummond 2010).

To evaluate the fit of the MSCM used to estimate
gene trees and the species tree in *BEAST, we used
posterior predictive simulation (PPS) as implemented in
P2C2M v.0.7.6 (Gruenstaeudl et al. 2015). All analyses
were performed using the *BEAST input and output
files, with 100 replicates. P2C2M calculates several
summary statistics to compare posterior and posterior
predictive distributions of each gene tree using PPS.
These summary statistics include the number of deep
coalescences (ndc; Maddison 1997), the coalescent
likelihood (coal: Rannala and Yang 2003; Liu and
Yu 2010), and the likelihood of coalescent waiting
times (lcwt: Rannala and Yang 2003; Reid et al.
2014). The discrepancy between posterior and posterior
predictive distributions is then measured by calculating
the difference between summary statistics from each
distribution (in every gene tree and the species tree). If

http://www.vicbioinformatics.com/software.velvetoptimiser.shtml
http://www.vicbioinformatics.com/software.velvetoptimiser.shtml
http://github.com/lh3/seqtk
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the MSCM has a good fit to the data, the expectation
is no difference between these distributions (centered
on zero). A substantial deviation from this expectation
demonstrates a poor fit of the MSCM to the data.

MODEL SELECTION

We calculated and compared approximate
likelihoods across a wide range of demographic
models using PHRAPL (Jackson et al., forthcoming;
https://github.com/bomeara/phrapl, last accessed
September 8, 2016). PHRAPL implements a framework
to examine a set of models that include divergence,
migration, or both without a priori constraints
on topology or direction of gene flow. Gene tree
distributions simulated under a given model are used
to approximate the log-likelihood of the data given that
model. An information theoretic approach is then used
to select the model(s) that best fit(s) the data (Anderson
2008). PHRAPL uses Akaike’s information criterion
(AIC), which can be interpreted as a measure of lack of
model fit. To better interpret these relative values, Akaike
weights (wAIC) are used to compare models. These
weights are analogous to model probabilities because
the sum of all wAIC values in a given set of models
is equal to 1. PHRAPL serves as an exploratory tool
for phylogenetic and phylogeographic-scale questions
(Jackson et al., forthcoming), and can compare the fit
of a range of isolation-only (IO), migration-only (MO),
isolation-with-migration (IM), or mixed models (MX)
to the data. Demographic models were designed as
follows: IO as models with fully resolved trees and no
migration between lineages, MO as n-inland models
(no coalescent events) with symmetric or asymmetrical
migration between two or more lineages, IM as models
with fully-resolved trees and symmetric or asymmetrical
migration between lineages, and MX as models which
were intermediate to IM and MO models, including one
coalescent event and migration between some, but not
all species. After an appropriate model or set of models
were selected using AIC, population sizes, divergence
times, and migration rates can be estimated under this
(these) model(s) either using PHRAPL (with a refined
grid with more points per parameter values) or another
available analytical tool.

Between any two populations, PHRAPL can examine
models that (i) exclude migration (0 rates), (ii) allow
migration in a single direction (1 rate), (iii) allow
symmetrical migration in both directions (1 rate), or
(iv) allow asymmetrical migration (2 rates). Because the
number of possible models is extremely large when
three groups are included in the analyses (more than
128,600 models), we performed model selection in two
separate steps. We first rendered the model space
more manageable by initially only considering models
in which all nonzero migration rates were set to be
the same (i.e., only a single free migration parameter
was allowed for symmetric migration). The resulting
model set, which contained all possible combinations

of possible topologies and migration rate assignments,
included 81 models, with a mix of IO, IM, MO, and MX
models. After inferring the best models in this initial
model set, we generated a second model set that allowed
for asymmetrical migration between populations (i.e.,
two free migration parameters were allowed), but only
included those topologies observed in the best models
from the initial search. This allowed us to explore subtle
and complex migration histories by only focusing on the
most likely coalescent histories. This second model set
included 320 models and contained the topologies of the
two best models (under full sampling).

For the PHRAPL analysis, we assigned samples to one
of three groups following the species classification of
M. evotis, M. thysanodes and M. keenii. Input gene trees for
all 808 loci were estimated in RAxML v.8.1.16 (Stamatakis
2014). Each locus was analyzed with two independent
runs, a GTR+GAMMA model, and a rapid-hill climbing
algorithm. Then, using PHRAPL we subsampled gene
trees, taking four alleles per species (for 200 replicates)
because simulation testing indicates that this number
represents the optimal trade-off between computational
effort and accuracy (Jackson et al., forthcoming). The
log-likelihood (lnL) and AIC of each model was then
calculated based on the proportion of matches between
simulated and empirical trees, where 100,000 trees were
simulated for each model. Simulation of gene trees was
conducted using a grid of parameter values for both
population divergence (�=0.30, 0.58, 1.11, 2.12, 4.07, 7.81,
and 15.00) and migration (m=0.10, 0.22, 0.46, 1.00, 2.15,
and 4.64) that was designed to encompass the full range
of potential values for western long-eared bats. Models
were analyzed in parallel runs and results were then
combined such that model averaged parameter values
could be calculated for � and m.

Testing Secondary Contact versus Speciation with Gene Flow
To test whether gene flow between lineages (if any)

has been constant over the history of divergence or,
alternatively, only occurred either recently (secondary
contact) or at early stages of divergence (speciation
with gene flow), we explored two additional models in
PHRAPL that vary in the mode of migration. In these
models, topology and direction of gene flow between
species were fixed to match the best model inferred
from the previous analyses. First, in a model positing
secondary contact, migration was set to only occur at
the tips (i.e., between 0.1 * � generations and the present,
where �= 4Ne�). Second, in a model of speciation
with gene flow, migration was initiated only after �–�/5
generations had passed. The fit of these two models was
then compared to the fit of the equivalent IM (assuming
constant gene flow along branches) and IO models that
had been analyzed previously.

Sensitivity Analyses
This study is the first to analyze hundreds of loci

collected from an empirical system using PHRAPL, and

http://github.com/bomeara/phrapl
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TABLE 1. Mean values and standard deviation (±) of summary statistics for 808 UCEs from M. evotis, M. thysanodes and M. keenii

All Mevo Mthy Mkee

N 63 34 20 9
Sequence length [bp] 422 (71) 422 (71) 422 (71) 422 (71)
Segregating sites 39 (24) 25 (18) 16 (13) 15 (14)
Haplotypes 15 (9) 9 (5) 6 (3) 4 (2)
Haplotype diversity 0.4487 (0.2119) 0.4840 (0.2303) 0.5238 (0.2585) 0.6517 (0.3162)
Nucleotide diversity (�) 0.0066 (0.0062) 0.0068 (0.0077) 0.0065 (0.0082) 0.0114 (0.0105)
Theta per site 0.0270 (0.0159) 0.0184 (0.0132) 0.0124 (0.0114) 0.0150 (0.013)
Tajima’s D −2.4430 (0.4104) −2.1411 (0.4751) −1.6404 (0.06827) −0.9513 (0.8999)

thus exploratory analyses were conducted to assess the
information content of the data and to understand how
much data are required to assess model fit. Since we
were interested in exploring how the rank or wAIC for
each model changed as a function of the amount of
data, we conducted PHRAPL analyses for all models
explored above (i.e., 81, 320, and 4 sets), starting with 8
loci and incrementally adding sets of 8 loci until 808 loci
were reached (for a total of 101 subsets). We repeated
this procedure starting with 101 loci and adding sets
of 101 loci until 808 loci were reached (for a total of 8
subsets). Instead of running PHRAPL 8 or 101 times, the
output match vector (i.e., number of times the observed
subsample was found in the simulated distribution
of trees for each simulation cycle) was extracted to
recalculate the lnL and AIC from only those loci specified
in each subset. wAIC values were plotted per model per
subset of loci using gplots (Warnes et al. 2014).

To assess whether the selection of the best model might
be driven by the information content of each locus (i.e.,
nucleotide diversity, segregating sites, or percentage of
missing data), we analyzed one locus at a time using the
set of 81 models, and calculated the strength of evidence
for the best model against the second-best model (i.e.,
measured as the ratio of the two models with the highest
wAIC; Anderson 2008). Regression analyses were then
performed between information content of each locus
and the wAIC ratio of the two best models. Box–
Cox approximations were used to determine whether
transformations of one or two of the variables were
needed (Kutner et al. 2004).

Parameter Estimation
To estimate divergence time, migration rate, and

population size parameters under the optimal model
(i.e., inferred with PHRAPL), a full probabilistic
framework was used, as implemented in IMa2 (Hey
and Nielsen 2007; Hey 2010). Due to computational
constraints, we restricted our IMa2 analyses to the
same sets of loci (10 sets of 50) analyzed in *BEAST.
The parallel version of IMa2 was used (i.e., IMa2p;
Sethuraman and Hey 2015) with the following settings:
120 chains distributed in 24 processors, a linear heating
scheme (-ha 0.98), 100,000 burn-in steps, and 1000
genealogies sampled per locus every 100 steps. Uniform
distributions were set as prior for all parameters,

with maximum parameter values according to the
largest values estimated by PHRAPL. Divergence time,
population size, and migration estimates were then
scaled using a nucleotide mutation rate of 2.2×10−9 per
year (genomic mutation rate calculated for mammals;
Kumar and Subramanian 2002) and a generation length
of 3–5 years (Carstens and Dewey 2010).

Finally, simulation studies have shown that when a
model ignores interspecific gene flow, divergence times
tend to be underestimated, resulting in lineages that
appear to be younger than they actually are (Leaché et al.
2014). To contrast divergence time estimates between
models with and without gene flow, values from the IM
model were compared with those calculated from the
*BEAST analyses (which ignored gene flow).

RESULTS

Capture Probes and Summary Statistics
The Illumina NextSeq lane produced more than 240

million paired-end reads for the samples analyzed here.
After processing, 52 million contigs were assembled,
and contigs with coverage greater than 100× that
aligned to UCEs were retained. Only those loci that
were amplified in at least three individuals per species
were aligned and phased. After filtering, 808 loci that
contained <1% missing data were analyzed. These loci
averaged 422 bp (range: 227–743), 39 segregating sites
(range: 0–132), and 15 haplotypes (range: 1–61; Table 1;
Supplementary Fig. S2 available on Dryad). The average
value of haplotype diversity was 0.4487 (range: 0.033–
0.951), whereas the average value of nucleotide diversity
was 0.0066 (range: 0.0001–0.1034). Myotis keenii showed
the highest haplotype and nucleotide diversity values
whereas M. evotis showed the lowest values. Mean values
of Tajima’s D differed between species, but none of them
were significantly different.

Species Tree Reconstruction and MSCM Fit Evaluation
Three species trees were estimated in the *BEAST

analysis across the 10 independent data sets
(Supplementary Fig. S3 available on Dryad): ((M. evotis,
M. thysanodes), M. keenii) was inferred in five analyses,
((M. keenii, M. thysanodes), M. evotis) was inferred in
two analyses, and ((M. evotis, M. keenii), M. thysanodes)
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FIGURE 2. Comparison of wAIC values for the first set of 81 models (a) and the second set of 320 models (b). wAIC values for each model
were calculated in subsets of loci gradually increasing. Each column represents a model (listed at the bottom) and each row represents a subset
of loci (listed at the right). Values of each subset (row) sum to 1 and color increases from the lightest to darkest wAIC value. The plot at the top
(a) shows 81 models sorted by degree of migration or isolation: isolation-only (IO) models are on the far left, migration-only (MO) models at
the far right and isolation-with-migration models (IM) are in the middle. The plot at the bottom (b) shows 320 models with two fixed topologies
and migration scenarios that may be symmetric or asymmetric. Detailed information for subsets of loci can be found in Supplementary Fig. S5
available on Dryad).

was inferred in three analyses. Each species tree was
highly supported with posterior probabilities close to
1.0 (Supplementary Table S4 available on Dryad), and
there was nothing to indicate that any of these results
were questionable (e.g., observed ESS >200 in most
cases). However, results from the P2C2M demonstrated
that most of these loci have a poor fit to the MSCM.
In extreme cases, none of the loci showed a good fit to
the MSCM, and in all cases the number of loci with a
demonstrably good fit to the data did not exceed 50%
(Supplementary Fig. S3 available on Dryad).

Model Selection
Results from the model selection analyses indicate

that gene flow is an important process to be included
in demographic analyses of this clade. For the smaller
model set (81 models), all models with the highest wAIC
include gene flow (Figs. 2 and 3; Supplementary Fig. S5
available on Dryad). While the wAIC of any single model
does not exceed 0.25, the sum of the wAIC of the top 8

models is ∼0.9, while the rest of the models have very
little support (Fig. 2a). The top two best models served as
the basis for a second set of models (320 models total) that
incorporate increased complexity of migration history.
In contrast to results from the initial model set, analysis
of the second model set resulted in a single model that
contained the vast majority of the total model probability
given all the data. This model (labeled as model 96b;
Fig. 4), has a wAIC score of nearly 1.0. Additionally,
the second-ranked model has the same topology as
the best model and the same parameterization of gene
flow between contemporaneous populations, but also
includes ancestral migration (model 160b; Fig. 4). Thus,
results from PHRAPL indicate that divergence with gene
flow best describes the demographic history of western
long-eared Myotis bats.

Testing Secondary Contact versus Speciation with Gene Flow
The speciation-with-gene flow model was the best

supported by our analyses (Fig. 5). With 50 loci or fewer,
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FIGURE 3. Models that achieved the highest (a) and the second highest (b) wAIC values when 81 scenarios were explored in PHRAPL. Subsets
of 8 loci were gradually added until 808 were reached. At the top of each plot, models are represented. Species names are abbreviated as Mevo
(M. evotis), Mthy (M. thysanodes), and Mkee (M. keenii).

it was difficult to distinguish between constant-gene-
flow and speciation-with-gene-flow models. However,
once more than 100 loci were analyzed, the weight of
the speciation-with-gene flow model was high. Neither
isolation-only nor secondary-contact models achieved
high support.

Sensitivity Analyses
Regardless of the analysis (i.e., the 81 or 320

model, or timing of gene flow), our sensitivity analysis
demonstrates the importance of sampling multiple loci.
In the 81-model analysis, the relative model weights
of the models change as a function of the number of
analyzed loci (Fig. 3). When all loci were analyzed,
the highest wAIC (0.25; Fig. 3a) was attained by an
IM model in which all three species both coalesce
simultaneously and share migrants (model 22). Model
22 was ranked the highest when subsets of 184–808

loci were analyzed (wAIC ranging from 0.158 to 0.246).
However, when fewer loci were analyzed (between 8 and
176), a MO model with migration between all species
(model 7) achieved the highest wAIC value (wAIC
ranging from 0.117 to 0.164). The second-best model
varied depending on the number of loci analyzed, but
always included migration (Fig. 3b). With the most
comprehensive sampling—when anywhere from 496 to
all 808 loci were analyzed—an IM model (model 34:
(M. evotis, M. thysanodes), M. keenii), with migration
among all species) always garnered second-best support
(wAIC ranging from 0.144 to 0.209).

The results are markedly different in the larger (320
model) analysis. An IM model (model 96b: (M. evotis,
M. thysanodes), M. keenii), with a mix of symmetric
and asymmetric migration among species) was always
ranked as having the highest probability when at least
40 loci were analyzed (wAIC was ∼1.0 once >200 loci
were analyzed; Fig. 4a).
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FIGURE 4. Models that achieved the highest (a) and the second highest (b) wAIC values when 320 scenarios were explored in PHRAPL.
Subsets of 8 loci were gradually added until 808 were reached. At the top of each plot, models are represented, where symmetric gene flow
(double arrow) is marked in red and asymmetric gene flow is marked in green (single arrow). Species names are abbreviated as in Figure 3.

Results from regression analyses indicated that the
wAIC ratio of the two best models and the number
of segregating sites are not correlated (F=1.798, df =
1 and 806, P=0.1803, r2 =0.0022; Supplementary Fig.
S6 available on Dryad), and that the log-wAIC ratio
between the two best models and nucleotide diversity
per locus are not correlated (F=0.2718, df =1 and 742,
P=0.6023, r2 =0.0003; Supplementary Fig. S6 available
on Dryad). The log-likelihood of the best model and
the squared relative number of missing data are slightly
correlated (F=8.018, df =1 and 806, P=0.004748, r2 =
0.0098; Supplementary Fig. S6 available on Dryad).

Parameter Estimation
Timing of divergence among species was estimated

using both IMa2 (gene flow included) and *BEAST (gene
flow excluded). Estimated divergence times were smaller
when gene flow was excluded from the model (Fig. 6).

Assuming a nucleotide mutation rate of 2.2×10−9 per
year per site, the divergence time between M. evotis
and M. thysanodes in the presence of gene flow can be
placed about 66,800 generations before present, with the
divergence between the common ancestor of M. evotis–
M. thysanodes and M. keenii at some 418,800 generations
before present. In contrast, divergence time estimates
made under the species tree model in *BEAST were very
recent (1723 and 3662 generations ago, respectively).

DISCUSSION

Results from numerous empirical studies suggest
that speciation can occur with gene flow (e.g., Martin
et al. 2013; Papadopoulos et al. 2011; Jónsson et al.
2014). However, in most cases, these studies base their
inferences on migration rates that are estimated under
a full IM model (i.e., a resolved tree with a distinct
migration rate parameter for each species pair and
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FIGURE 5. Comparison of wIAC values between isolation-only (IO), isolation-with-constant-migration (IM_con), isolation-with-ancestral-
migration (IM_anc or speciation-with-gene-flow) and, isolation-with-recent-migration (IM_rec or secondary contact) models. As in Figure 2,
wAIC values per model were calculated with different number of loci gradually increasing. Each column represents a model (listed at the
bottom) and each row represents a subset of loci (listed at the right). Values of each subset (row) sum to 1 and gradient intensity increases from
the lightest to darkest wAIC value. Species names are abbreviated as in Figure 3.

direction), without assessing (i) whether an IO (i.e.,
species tree) model is a good fit to their data or (ii) which
of several possible IM models is the most appropriate
model for the data. In these cases, even when sister
species display ongoing migration rates greater than
0, it is unclear whether such results are biologically
meaningful or an artifact of poor model fit. An objective
assessment of model fit should occur concomitantly with
parameter estimation (Koopman and Carstens 2010).
Here we have adopted two approaches to test whether a
model of divergence with migration best represents the
evolutionary history of western long-eared Myotis bats.
The first approach was to assess the fit of an IO (i.e.,
species tree) model to the data, using posterior predictive
simulation (Reid et al. 2014), as simulation testing
suggests that poor fit to the MSCM can be caused by gene
flow (Gruenstaeudl et al. 2015). Our second approach
was to conduct phylogeographic model selection using
PHRAPL to directly compare a broad range of models
that include various IO and IM models, as well as MO
and MX models. This enabled us to estimate divergence

times, population sizes, and migration rates using a
model that best fits the data.

Our results based on 808 UCEs clearly show that an IO
model is not a good fit to our data set for western long-
eared Myotis bats. The MSCM, which assumes that gene
tree discordance results only from incomplete lineage
sorting, has a demonstrably poor fit to each of 10 replicate
data sets consisting of 50 loci each, regardless of the
summary statistic used. PPS results thus suggest that
genomic data collected from these bat species should
not be analysed using a species tree model that ignores
gene flow. When we ignored this finding, and estimated
species trees in *BEAST using the replicate data sets,
all three possible in-group tree topologies were inferred
in separate analyses. This result is curious given the
results of simulation testing (Heled and Drummond
2010), which suggest that 50 loci should be adequate
to accurately estimate the species tree. We suspect
that our results reflect the differences in complexity
between simulated and empirical data. However, with
the same amount of data, although PHRAPL was unable
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FIGURE 6. Comparison between IMa2 (left) and *BEAST (right)
divergence time estimates using 50 loci chosen at random (data set
1). Divergence times between nodes in each figure are proportional
to values calculated in IMa2 [�1=0.062 (0.049−0.084), �2=0.853
(0.676−−1.044)] and *BEAST [�1=0.0016 (0.0007−0.0026), �2=0.0034
(0.0031−0.0044)]. Species names are abbreviated as in Figure 3.

to identify a single model with high support, it did
rule out IO models since no model without migration
achieved even appreciable support. Notably, none of
the *BEAST analyses produced any indication that the
resulting phylogeny was anything but a robust estimate
of the species tree. For example, nodal support was
high and convergence metrics suggested that the MCMC
had effectively searched parameter space. However,
despite the topological differences in the species tree, the
inferred timing of divergence was shallow in all cases.

In addition to our assessment of model fit of the
MSCM, we employed PHRAPL to objectively choose
among a large number of possible phylogeographic
models. In total, we explored 405 models in three stages
to determine what type of model (i.e., IO, MO, IM,
and MX) is the most supported given our data. Unlike
*BEAST, PHRAPL can incorporate all 808 loci into a
single analysis, although this is made possible by the
fact that PHRAPL does not conduct a full evaluation
of parameter space (to our knowledge, no existing
software does). We thus considered possible models in
three stages because analyzing all possible models is
logistically formidable, as there are >128,600 possible
models for three taxa, a number that would increase if
we allowed models to have migration rates that varied
through time. Rather than devoting several years to
an exhaustive search of model space, we simplified
this search using an incremental design where each
successive set was informed by, and thus more focused
than, the previous set of models. Specifically, the three
steps were to (i) assess whether gene flow should be
modeled and identify the best topologies, (ii) infer
directionality of migration using the best topologies, and
(iii) estimate the timing of gene flow. With this approach,
as with all model selection studies, there is always a
chance that the very best model will be excluded from
the set that is being tested. However, such a systematic
approach ensures that the inferred model, if not the
theoretical best, will likely be similar to this optimal
model. When the first set of models was explored, all
scenarios that achieved the highest probability included

migration. When the second set of models was analyzed,
a fully resolved tree with symmetric and asymmetric
gene flow offered the best fit to the Myotis data.
Counterintuitively, our sensitivity analysis suggested
that fewer loci were needed to identify the optimal model
in this larger, but more focused model set. Finally, when
the optimal IM model was analyzed under different
modes of migration (constant, secondary contact, or
speciation-with-gene flow), the speciation-with-gene
flow model achieved strong support once >200 loci were
included in the analysis. These results demonstrate the
application of PHRAPL in model selection when an
appropriate set of models is designed after exploring
and discarding models with poor fit.

Our estimates of the species tree under the MSCM
illustrate the influence of inference error that can result
when analyses are conducted using a model that is
not appropriate for the data. The results from *BEAST
indicate that speciation in western long-eared Myotis is
very recent (between 1723 and 3662 generations ago),
and the pattern of diversification is not consistent across
analyses. Both of these errors are disturbing, but for
different reasons. Gene flow has been demonstrated to
cause errors in species tree estimation (Leaché et al. 2014),
and the distortion of divergence time estimates towards
the tips reported by these authors is similar to what
we observe here. Highly supported discordance among
species trees inferred using large iterative sets of loci is
more troubling. While the average locus length (422 bp)
and number of variable sites (39) of our data set may be
modest compared to other phylogenetic studies, each of
our analyzed sets of data is larger (in terms of number
of loci) than those that have been suggested by Heled
and Drummond (2010) to be adequate to produce a good
estimate using *BEAST. Our results thus suggest that
gene flow, even when it occurs only among sister taxa,
can lead to errors in the inferred topology of the species
tree and divergence time estimates.

Myotis Systematics
Phylogenetic inference involving groups of closely

related species is particularly challenging. In many
cases, clades with complex taxonomy are referred
to as complexes of species, implying that the species
boundaries are inadequately known. The species
status and phylogenetic relationships among M. evotis,
M. thysanodes and M. keenii have been questioned
due to paraphyletic patterns at some loci (Dewey
2006; Carstens and Dewey 2010). Carstens and Dewey
(2010) suggest that these are independent lineages
(i.e., species) experiencing rampant gene flow, but
the species relationships were not resolved in their
study nor did the authors explicitly test for migration.
Here, we demonstrate not only that gene flow among
these species has occurred, but that it was likely
most important during the early stages of divergence,
and may not occur in the present. After accounting
for gene flow, the topology inferred was ((M. evotis,
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M. thysanodes), M. keenii), which matched the one
inferred previously by Dewey (2006). As previously
mentioned, ignoring interspecific gene flow tends to
underestimate divergence times. For example, previous
estimates suggested M. lucifugus diverged from the
western long-eared species during the Pleistocene,
implying that divergence among the western long-eared
bat species occurred later (Carstens and Dewey 2010).
Our divergence time estimates that explicitly consider
gene flow are deeper than expected (between 66,782 and
418,785 generations ago). These estimates indicate that
divergence in the presence of gene flow among M. evotis,
M. thysanodes and M. keenii took place during the mid to
late Pliocene (before the Pleistocene).

We are aware that some of these species are
experiencing range expansions. For example, M. keenii
was sampled outside of its described geographic range
and recent museum records suggest that this species
is expanding its range. Such recent expansion may
facilitate genetic exchange with other species (e.g.,
M. thysanodes), but to date we have not detected
signals of recent genetic exchange using neutral
loci. Furthermore, secondary contact models did not
achieve high probabilities, suggesting that any current
genetic exchange is slight. This lack of support for
secondary contact models also suggests that our species
identification was largely accurate given that species
misidentification would likely mimic the effects of gene
flow, erroneously leading to support for secondary
contact models.

In conclusion, our results suggest that both incomplete
lineage sorting and gene flow should be modeled
in phylogenetic inferences of closely related lineages.
We have shown empirically that neglecting gene flow
on phylogenetic and phylogeographic inferences leads
to wrong conclusions on the mode and tempo of
divergence, obscuring important processes such as
speciation in the presence of genetic exchange.
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