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Abstract

Model-based analyses are common in phylogeographic inference because they parame-

terize processes such as population division, gene flow and expansion that are of inter-

est to biologists. Approximate Bayesian computation is a model-based approach that

can be customized to any empirical system and used to calculate the relative posterior

probability of several models, provided that suitable models can be identified for com-

parison. The question of how to identify suitable models is explored using data from

Plethodon idahoensis, a salamander that inhabits the North American inland northwest

temperate rainforest. First, we conduct an ABC analysis using five models suggested

by previous research, calculate the relative posterior probabilities and find that a sim-

ple model of population isolation has the best fit to the data (PP = 0.70). In contrast to

this subjective choice of models to include in the analysis, we also specify models in a

more objective manner by simulating prior distributions for 143 models that included

panmixia, population isolation, change in effective population size, migration and

range expansion. We then identify a smaller subset of models for comparison by gen-

erating an expectation of the highest posterior probability that a false model is likely

to achieve due to chance and calculate the relative posterior probabilities of only those

models that exceed this expected level. A model that parameterized divergence with

population expansion and gene flow in one direction offered the best fit to the P. ida-
hoensis data (in contrast to an isolation-only model from the first analysis). Our

investigation demonstrates that the determination of which models to include in ABC

model choice experiments is a vital component of model-based phylogeographic

analysis.
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Introduction

Model-based analyses have become a common compo-

nent of phylogeographic inference because they param-

eterize evolutionary processes that are of interest to

biologists (Beaumont et al. 2010). To conduct a model-

based phylogeographic analysis, the choices available to

researchers range from full likelihood implementations

of predefined models to approximate methods that

allow substantial customization of the model to the par-

ticulars of any empirical system. We prefer the latter

option because it allows researchers to evaluate multi-

ple demographic models relevant to their system, and

to identify the model that offers the best fit to their

data. In these cases, the process of model selection can

guide phylogeographic inference by identifying the evo-

lutionary processes (i.e. parameters) that have shaped

the patterns of genetic variation (Carstens et al. 2013).

While model-based methods offer a number of bene-

fits to phylogeographic investigations (Knowles 2009),

the question of how researchers identify the models

used to analyse their data is underexplored and can be

a barrier to phylogeographic investigations. In model
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systems, results of prior research often guide the choice

of analytical models (e.g. Smith et al. 2012). However, in

nonmodel systems, there may be little beyond a basic

understanding of life history to guide the choice of

models to use in a phylogeographic analysis (e.g. Smith

et al. 2011; Satler et al. 2013), and researchers are forced

to rely on intuition to choose analytical methods. In

these cases, the accuracy of inference is contingent on

the fit of the assumed model to the empirical data.

Because parameter estimates themselves are dependent

to some degree on the model used (Koopman &

Carstens 2010), it is likely that both parameter estima-

tion and phylogeographic inference can be improved by

incorporating phylogeographic model selection into the

inference process.

In demographic model selection, phylogeographic

inference is derived from a statistical comparison of

multiple models given the data. For example, in a given

system, there are clear implications to phylogeographic

inference if an n-island model could be shown to be a

much better fit to the data than a divergence with gene-

flow model. Phylogeographic model comparison can be

conducted within some full likelihood programs, such

as Migrate-n (Beerli & Palczewski 2010; Provan & Mag-

gs 2012) or IMa2 (Hey & Nielsen 2007; Carstens et al.

2009), but these comparisons are limited to the set of

models implemented within the respective programs.

Model comparison is thus considerably more flexible

when simulation-based approaches such as approxi-

mate Bayesian computation (ABC) are used. One of the

earliest applications of ABC to the analysis of genetic

data used this approach to demonstrate that a model of

population growth was a better fit to human Y-chromo-

some data than a model without population growth

(Pritchard et al. 1999). More recently, the approach has

been used to compare competing models of human evo-

lution (Fagundes et al. 2007; Laval et al. 2010) and to

demonstrate that a model of a population bottleneck

was a good fit to microsatellite data collected from

chimpanzees (Peter et al. 2010).

Phylogeographic model selection using ABC is attrac-

tive for several reasons. First, while there are still tech-

nical challenges (e.g. computational intensity, choice of

priors and summary statistics, and how to conduct the

rejection step), phylogeographic model selection using

ABC is conceptually simple (Beaumont 2010; Bertorelle

et al. 2010; Csillery et al. 2011). It is conducted by gener-

ating a joint prior distribution from multiple models,

forming a posterior distribution by selecting a small

percentage of the simulated data that represents the

closest match to the empirical data, then determining

the relative contribution of each model to the posterior

distribution. Second, ABC is flexible. The methods used

to simulate the prior distribution are easily customized

to nearly any empirical system and can be as complex

or simple as desired; any model that can be simulated

can be used in the analysis. While some authors have

criticized phylogeographic model selection using ABC

for ignoring differences in the complexity of models

(i.e. the dimensionality as measured by number of

parameters inherent to each model; Templeton 2010),

the calculation of the marginal likelihood allows for dif-

ferences in dimensionality across models (Beaumont

et al. 2010), and thus, there is no need to correct for dif-

ferences in the degree of parameterization. A more

compelling criticism is related to the choice of the sum-

mary statistics used to summarize the simulated and

empirical data. Robert et al. (2011) demonstrated that

insufficient summary statistics could lead to a loss of

information that can bias the calculation of the relative

posterior probability, although they note that there are

strategies for circumventing this difficulty (e.g. Ratmann

et al. 2009; Sousa et al. 2009). Another criticism, and the

factor that motivated this work, is related to the choice

of the models to include in the analysis.

Phylogeographic model space is complex: there may

be n subpopulations, the size of each could be described

using an independent parameter h = 4Nel, populations
could be exchanging alleles at some rate Mij, each pop-

ulation could have diverged temporally from other pop-

ulations at some time s, and each could be growing or

expanding at some rate c. Our question is: ‘How do

researchers choose the models that they include in an

ABC analysis?’ Given the complexity of model space, it

is impossible to generate the prior distribution to

exhaustively cover hypothesis space represented by all

possible models (Templeton 2009). On the surface, this

is a general criticism to model-based methods, easily

rebuked by alluding to the dictum of George Box: ‘all

models are wrong, but some are useful’ (Box & Draper

1987). However, if model choice is used to guide phylo-

geographic inference (e.g. Fagundes et al. 2007) the per-

tinent question becomes, ‘Are any of the models in our

model comparison set useful?’ Because the posterior prob-

abilities are relative, the results could easily mislead

researchers if the model set for comparison contains

several wildly inappropriate models and one that is

only a marginally better summary of the demographic

history. As researchers who conduct investigations on

nonmodel systems that typically lack prior information

useful for model selection, this criticism is troubling.

Furthermore, we suspect that this difficulty may be par-

tially responsible for the reluctance of phylogeographers

to broadly incorporate ABC into their investigations.

The goal of this study was to explore the fit of demo-

graphic models using ABC in Plethodon idahoensis, a

terrestrial salamander from the Pacific Northwest

(PNW) of North America. We take two approaches to
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identifying models to include in the analysis. First, we

parameterize five phylogeographic models that have

been used in previous work to see which is the best fit

to our data. However, we have no a priori expectation

that they represent models with a good fit to the empir-

ical data so we also explore an objective approach to

identifying demographic models. We consider 143 mod-

els that represent different combinations of the perti-

nent parameters (1 vs. 2 populations, h = 4Nel,
migration and population expansion) that could be

used to describe demographic history in P. idahoensis.

We rank each model according to the data using poster-

ior predictive simulation (PPS) and develop a null

expectation of the highest posterior probability that a

false model can achieve by chance in the full 143 set of

models. We then conduct a second model choice exer-

cise using only those models that exceed this expecta-

tion. After exploratory analyses, we conclude that this

objectively chosen model represents a better fit to the

data collected from Plethodon idahoensis than does the

best of the models used in previous studies.

Methods

Empirical data and study system

We use ABC analysis to explore the demographic his-

tory of P. idahoensis, the only Plethodon salamander

located in the inland temperate rain forests of the north-

ern Rocky Mountains of North America (Wilson & Lar-

sen 1998). Previous work (Carstens et al. 2004) suggests

that the dominant signal in genetic data is one of popu-

lation expansion from southern refugia following glacial

retreat at the end of the Pleistocene. However, the

evidence for population structure within P. idahoensis is

less clear. The fully terrestrial, lungless salamanders in

the genus Plethodon typically exhibit high site fidelity,

small home range, defence of small territories and sel-

dom disperse across habitats that expose them to dry-

ness and heat (Smith & Green 2005). As a result, in a

topographically diverse and geologically complex

region like the PNW, terrestrial salamanders often

reveal cryptic genetic diversity, even on geographic

scales smaller than the widespread distribution of

P. idahonesis (e.g. Mahoney 2004; Mead et al. 2005). In

P. idahoensis, data from the mitochondrial genome indi-

cate that there is population differentiation between the

northern and southern river drainages. This structure is

consistent with results from environmental niche mod-

elling (Carstens & Richards 2007), and these findings

prompted Carstens et al. (2009) to estimate demographic

parameters using an isolation-with-migration model

between these regions.

We gathered data from five genetic loci in 30 P. idaho-

ensis individuals that were sampled throughout the

range of the species in the northern and southern drain-

ages (Fig. 1), thus expanding previous data sets. Sam-

ples from British Columbia are genetically identical to

those from the northern portions of Idaho and Montana

(Carstens et al. 2004) and not included here. Loci

include the mitochondrial cytochrome b gene (Cyt b)

and four autosomal loci: recombination activating gene

1 (RAG1), internal transcribed spacer ribosomal subunit

1 (ITS1), glyceraldehyde-3-phosphate dehydrogenase

gene (GAPD) and an anonymous locus (Table 1). Loci

exhibit no evidence of recombination using the four-

gamete test or the SBP and GARD methods imple-

mented in Hy-Phy (Pond & Frost 2005; Pond et al.

2006), and sequences generated for this study are

deposited in GenBank under Accession nos JX978543-

JX978577. Primer sequences and thermocycling condi-

tions are available (Table S1, Supporting Information).

Idaho

OR

WA

MT

British Columbia

Idaho

OR

WA

MT

British Columbia

Fig. 1 Sampling localities of Plethodon

idahoensis in the Pacific Northwest, USA.

Dark line is its distribution in Idaho,

Montana and British Columbia. The dot-

ted line within the distribution delineates

the northern (population 2) and southern

(population 1) river drainages. The large

dotted line represents the extent of the

ice sheets during the last glacial maxi-

mum.
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Sanger sequencing was carried out with BigDye� TERMI-

NATOR version 3.1 on an ABI 3130XL Genetic Analyzer

(Applied Biosystems). Sequence editing and alignment

were conducted using GENEIOUS version 5.4 (Drummond

et al. 2011) and checked by eye. Sequence data were

phased to alleles using PHASE (Stephens et al. 2001) with

95% confidence or were otherwise subcloned using the

Qiagen PCR cloning kit. The GAPD locus included het-

erozygous indels so CHAMPURU version 1.0 (Flot 2007)

was used to determine phase for some individuals. Six

summary statistics (p, number of segregating sites, Taj-

ima’s D, p within each of the northern and southern

populations and p between populations) were calcu-

lated for each locus using DnaSP (Rozas et al. 2003).

Phylogeographic models and summary statistic testing

ABC was utilized for several analyses (below). Prior

distributions for 143 demographic models were simu-

lated using the program ms (Hudson 2002), with data

simulated to match the number of chromosomes sam-

pled under each locus, and simulations were scaled to

correspond to the mitochondrial locus. Prior distribu-

tions consisted of 100 000 simulated data sets for each

of the 143 demographic models. Demographic models

were defined on the basis of four categories of parame-

ters: (i) models were defined as either n-island, diver-

gence from a common ancestor, or panmixia; (ii)

h = 4Nel (Ne is the effective population size and l is

the per-locus mutation rate) was either the same in all

populations at all time periods, unique in all popula-

tions at all time periods or the same in some combina-

tion of populations at some time periods; (iii) migration

was either not included, present in both directions

between populations 1 and 2, or in one direction only;

(iv) population expansion was either not included,

included in one population or included in both popula-

tions (Fig. 2). A PERL script (available at doi: 10.5061/

dryad.8kq65) was used to draw values from uniform

prior distributions for the parameters (s, h, h1, h2, m12,

m21, c1 and/or c2) present in each model and used to

simulate the genealogies. The upper and lower bounds

Table 1 Summary statistics for 5 loci

Locus Source p
Segregating

sites (SS)

Tajima’s

D (D)

p within

pop1 (pW1)

p within

pop2 (pW2)

p between

pops (pB)

Cyt b Carstens et al. 2004 0.0082 27 �0.9358 0.0047 0.0050 0.0113

RAG1 Weins et al. 2006 0.0024 13 �0.1791 0.0017 0.0020 0.0021

ITS1 Hillis and Dixon 1991 0.0019 4 �0.1810 0.0000 0.0023 0.0021

Gapd Dolman and Phillips 2004 0.0032 8 �0.1153 0.0002 0.0036 0.0043

Anonymous This study 0.0146 21 2.2552 0.0095 0.0160 0.0157

Shown for each locus are the source of the primers, the length (bp) and six summary statistics: nucleotide diversity (p), the number

of segregating sites (SS), Tajima’s D (D), nucleotide diversity within the northern (pW1) and southern (pW2) populations and nucleo-

tide diversity between the northern and southern populations (pB).

Divergence time (τ)

0: island model
1: divergence at time (τ)

X: pamixia

Prior: 0.001–5 
(4N generations)

Theta (θ)

0: θA = θ1 = θ2
1: θA = θ1 , θ2
2: θA = θ2 , θ1
3: θA , θ1 = θ2
4: θA , θ1 , θ2

Prior: 0.01–10 per locus

Migration (m)

0: no migration
1: m12
2: m21

3: m12 , m21

X: na/pamixia

Prior: 0–5 migrants 
per generation

Population expansion (γ)

0: no expansion
1: γ1
2: γ2

3: γ1 , γ2

Prior: 0.1–9
(exponential)

For each model: τθmγ

Fig. 2 Numeric coding for demographic models being tested. All models are identified with a 4-digit number that describes the

parameter combination associated with a particular model corresponding to population divergence, h = 4Nem, migration rates and

the extrinsic rate of population expansion. Each parameter can be assigned to the northern (subscript 2) or southern (subscript 1)

populations in one of several combinations. Uniform priors are based on previous Plethodon work and occupy the full range of bio-

logically reasonable values and are according to ms (Hudson 2002) documentation.
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of parameters included in a given model were derived

from previous analyses in these salamanders

(hlocus = 0.01–10.0; s = 0.001–5.0; m = 0–5.0; c = 0.01–9.0)

to cover the range of biologically plausible values for

each parameter given our system. Summary statistics

from simulated data (p, number of segregating sites,

Tajima’s D, p within each of the northern and southern

populations and p between populations) were calcu-

lated using a custom PERL script written by (N. Takebay-

ashi, personal communication).

The six summary statistics collected from the data

were calculated for all simulations, and 24 combinations

of these summary statistics were evaluated to determine

which vector of summary statistics maximized the prob-

ability of choosing the true model. For each of the mod-

els, 10 data sets were selected at random from the prior

distribution as pseudo-empirical data sets (a total of

1430 tests) for the ABC rejection step in msBayes (Hick-

erson et al. 2007). In order to choose the most appropri-

ate vector of summary statistics for the identification of

demographic scenarios (Marin et al. 2011; Robert et al.

2011), vectors were ranked according to their ability to

maximize the probability of choosing the true model

over the average probability of choosing an incorrect

model (Pr(true model)/mean Pr(false models); Tsai & Car-

stens 2013). After simulation testing, one vector of sum-

mary statistics was chosen for use in all subsequent

ABC analyses (see Table S2, Supporting Information).

Approximate Bayesian computation

After a series of trials exploring threshold size and the

utility of regression-based corrections (Table S3, Sup-

porting Information), a simple rejection step was con-

ducted using msBayes (Hickerson et al. 2007) and a

threshold size of 0.0002–0.00005 was chosen to retain

100–715 models in the posterior for model prior sets

containing between 5 and 143 models. We conducted

several ABC analyses:

1 We compared five models that were either inferred

or assumed in previous investigations (Fig. 3). These

models include that of a single panmictic population,

an expansion from a single refuge (Carstens et al.

2004), an isolation model with no size change

(Carstens & Richards 2007), an isolation model with

size change between the ancestral and descendant

populations (Carstens et al. 2009) and a full isolation-

with-migration model and size change between the

ancestral and descendant populations (Carstens et al.

2009). We also calculated Bayes factors (BF) to evalu-

ate the strength of evidence (Kass & Raftery 1995) in

favour of the model with the highest posterior proba-

bility.

2 We randomly selected four models from the full set

of models and included the best model from the

empirical comparison above. In this way, we gener-

ated prior distributions from 100 replicated model

sets (each containing five demographic models)

intended to allow us to visualize the influence of

model set composition on the relative posterior prob-

ability (PP) of the best (as chosen above) model. The

rejection step outlined above was used to generate a

relative PP of the chosen model for each replicate.

While this approach does not truly replicate the

analysis (because the composition of the prior distri-

bution differs in each replicate), it illustrates the influ-

ence of the set of models in the prior distribution on

the PP of the model identified as optimal in the initial

analysis.

3 We conducted simulation testing to evaluate the abil-

ity of ABC to identify the model used to generate the

data relative to the number of models included in the

prior distribution. We anticipate that the accuracy of

ABC in regard to identifying the true model will

decrease as a function of the number of models

included in the comparison because the prior proba-

bility of each model is a function of the total number

of models in the comparison (from 0.5 in a compari-

son of two models to approximately 0.007 in our

comparison of all 143 models) and there are more

ways to be incorrect as the number of models

increases. The simulation study will test this expecta-

tion, but can also be used to generate an expectation

for the highest PP that a false model could have by

chance. To do this, we randomly selected a set of

models equivalent in size to the posterior distribution

Fig. 3 Diagram of the five demographic

models (Carstens et al. 2004, 2009; Car-

stens & Richards 2007) used for the first

round 5-model ABC analysis. Each

model includes one or more parameters,

is labelled by a numeric code and

includes its posterior probability in the

initial ABC model choice analysis.
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of a given trial and calculated over 100 replicates the

number of times that the most-represented model

occurred.

4 We conducted a single ABC analysis using all of the

models in the comparison set, for a total of 143 demo-

graphic scenarios. While we are not exploring every

conceivable model in this approach, we do include

relevant parameters based on prior knowledge of the

P. idahoensis populations and thus these models serve

as a representative sample of possible models that

either treat the northern and southern drainages as

the same or as distinct populations.

5 We explored the influence of different classes of

parameters by grouping models from the posteriors

and comparing them as follows: (i) island vs. panmic-

tic vs. isolation; (ii) no change in h vs. change in h in

population 1 vs. change in h in population 2 vs.

change in h in both populations; (iii) migration from

population 2 to 1 vs. migration from population 1 to

2 vs. migration in both directions vs. no migration;

and (iv) expansion in population 1 vs. expansion in

population 2 vs. expansion both populations vs. no

population expansion. The total PP for each group

was determined from the 143-model ABC test for

each group.

6 Finally, the mean and 95% confidence intervals of all

parameters were estimated using R 2.15.1 (R Core

Team 2012) using a select pair of models (below).

Posterior predictive simulation

In addition to the ABC analyses, we calculated the fit

of models in a nonrelative way to the empirical data

using posterior predictive simulation (PPS; Gelfand &

Ghosh 1998; Cornuet et al. 2010; Franc�ois & Laval

2011). This was done by calculating the mean Euclid-

ean distance (MED) of the vector of all estimated

summary statistics from simulated data under each of

the 143 models to the empirical data. We also plotted

the PPS distributions of individual summary statistics

used in the ABC analyses for three of the models

to explore model adequacy and identify any bias in

summary statistics.

To conduct the PPS, the rejection step in msBayes

(Hickerson et al. 2007) was incorporated into a pipeline

and used to generate a posterior distribution for each

model (threshold = 0.0005 to retain 50 models in the

posterior). These data points represent the simulated

data sets closest to the empirical data for each model

based on our chosen vector of summary statistics. The

PPS used each point in the posterior distribution to

simulate 100 new genealogies and associated summary

statistics, so the distribution from the PPS contained a

total of 5000 points. Thus, the variation in the genealo-

gies (and associated summary statistics) is assessed

based on specific demographic parameter values for

any given model that represent those closest to the

empirical data. As Euclidean distance is used for

the ABC rejection step, we chose this measure to rank the

distance of the models to the P. idahoensis data rather

than plotting each summary statistic, although this was

done for 15 summary statistics for three models (see

above). From the PPS distribution, we calculated the

MED from the empirical data to each point in the simu-

lated data, and this distance was used to measure the

nonrelative fit of the model to the P. idahoensis data.

Results & discussion

Empirical data and summary statistics

Sequence data were gathered for five loci in 30 samples.

Summary statistics (p, number of segregating sites, Taj-

ima’s D, p within each of two populations and p
between populations) for each locus are shown in

Table 1. Prior distributions for each model were drawn

from the prior range of associated parameter values (s,
h, h1, h2, m12, m21, c1, c2; see Fig. 2), and summary

statistics were generated from each of 100 000 draws.

After simulation testing, the summary statistic vector

{pwithin population 1, pwithin population 2, pbetween populations}
maximized Pr(true model)/mean Pr(false models) (Table S2,

Supporting Information) and was used for all ABC

analyses because it chose the correct model with greater

accuracy than the other vectors.

Approximate Bayesian computation

We first conducted an ABC analysis using five models

suggested by previous research (Fig. 3) and determined

that the isolation model without gene flow or change in

h (model designated 1000 in our numeric labelling

scheme; Fig. 2) had the highest PP (0.70). While two

other isolation models had some posterior support, the

models without subdivided populations were not repre-

sented in the posterior. The posterior support in favour

of model 1000 is modest (BF = ~4.7) under the Kass &

Raftery (1995) scale, but the parameter estimates from

this model are reasonable (Table 2). Using the nDNA

and assuming a neutral mutation rate of 1.0 9 10�9

substitutions/site/generation and our average sequence

length of 561, the effective population size of P. idahoen-

sis would be approximately 34 700 individuals and the

temporal divergence between the populations dates to

the mid-Pleistocene (approximately 218 000 genera-

tions). On the surface, the choice of this model appears

biologically plausible because these parameter estimates

© 2014 John Wiley & Sons Ltd
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confirm previous expectations. However, because we

were curious about how the relative PP of this model is

influenced by the choice of models in the comparison

set, we conducted an ABC analysis with models

selected at random to compare with this best model

(1000).

We randomly selected four models from the set of 142

possible models (i.e. all but model 1000) and repeated

this five-model analysis 100 times. Results demonstrate

that model set composition is an important consideration

in ABC model choice exercises (Appendix S1 Supporting

Information); model 1000 had a mean PP across repli-

cates of PP1000 = 0.44 with a wide range (0.21–0.77). This

illustrates the inherent challenge to ABC model choice;

depending on the models chosen in the comparison set,

relative posterior support could favour or oppose a given

model to a degree that would appear meaningful based

on traditional interpretations of the PP. This result also

raises questions that are either specific to our data (i.e.

How much information are contained in our data? Are

the collected data adequate to identify the true model in

a comparison of five models?) or general to ABC (i.e. Are

we including models that accurately represent our data?

Does the probability of selecting the true model change

as a function of the number of models included in the

analysis?). We addressed the question about the informa-

tion contained in our data by simulating additional loci

based on the averaged characteristics of the empirically

sampled data, and found that increasing the amount of

data collected from 5 to 20 loci did not substantially

improve our ability to differentiate models (Appendix

S2, Supporting Information). While this is not an exhaus-

tive analysis, it does indicate that a 4-fold increase in the

amount of data has a negligible effect on the power of the

analysis to differentiate models. Therefore, we expanded

the simulation study to address the more general ques-

tions.

A power analysis was conducted to explore the rela-

tionship between the accuracy in identifying the true

model and the number of models that contribute to the

prior distribution (Fig. 4). The number of models (n)

varied from 2, 3, 4–20 (increments of 2), 30–130 (incre-

ments of 20) and 143. We analysed 100 replicated data

sets, with the true model and n�1 additional models

chosen at random for each replicate. Results indicate

that ABC performs well (measured by average PP of

the true model) when a small number of models con-

tribute to the prior distribution, but that accuracy

quickly decreases to just above the prior probability

above n = 4. When we generated an expectation of the

average probability of the most-represented model

found in a random sample of models of the same size

Table 2 Population parameter estimates

Model h h1 h2 s m1 m2 c1 c2

1000 0.079

(0.059–0.097)

na na 1.569

(1.176–1.961)

na na na na

1023 0.089

(0.061 to 0.117)

na na 1.933

(1.507 to 2.359)

na 2.858

(2.349 to 3.368)

3.776

(�0.668 to 8.220)

1.678

(0.720 to 2.635)

Estimates are from mean values in posterior distributions. 95% CI are shown in parentheses below the estimates. Models that lack a

given parameter are marked with an ‘na’.

Fig. 4 Simulation testing to investigate

the performance of ABC model choice as

a function of the number of models. The

prior probability (blue line), averaged

probability of the most-represented

model in a selection equal to the size of

the posterior (red line), posterior proba-

bility of the true model (green line) and

the median Bayes factor (dotted line) are

shown.
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of the posterior at a given increment of the power

analysis, we found that this number exceeded the PP of

the true model above n = 3. Therefore, the expected PP

of the true model decreases as a function of how many

models are included in the model choice experiment.

However, the generation of this random expectation

allows us to identify a smaller set of models that can be

identified because they exceed the random expectation.

In many cases, this smaller set includes the true model

as well as similar models, because as the number of

models in the prior distribution increases, the difference

among these models decreases, resulting in a posterior

distribution that contains both the true model and a set

of models that are similar to it.

To explore this suggestion, we conducted a large

analysis using the empirical data and prior distributions

from all (i.e. 143) of the models used above in the simu-

lation testing. After the rejection step, 120 models were

represented in the posterior distribution (Fig. 5;

Table 3). As anticipated, the posterior probabilities for

all models were low, although many were greater than

the prior expectation of approximately 0.007. The mod-

els with the highest PP in this analysis included a mix

of isolation and island models, and within these catego-

ries, the parameterization was similar. None of the

models represented in the posterior above the random

threshold parameterize a change in h, while most

included some sort of gene flow and expansion in at

least one of the populations. The similarity of these

models explains why model choice experiments with

ABC decrease in accuracy as the number of models

increases; as the parameterization of models become

more similar, the posteriors are populated by models

that are similar to the true model. Notably, the model

chosen as best in the initial 5-model test had a PP

(0.015) lower than the random expectation (0.016) in the

143 model analysis. This result is robust to change in

the size of the threshold used in the rejection step, and

nearly the same when regression (Beaumont 2010) is

used in model selection (see Table S3 & Appendix S1,

Supporting Information), further suggesting that model

1000 is not representative of the demographic history of

P. idahoensis. Consequently, we focus on the models that

occur in the posterior in proportions that are greater

than expected at random (Table 4).

In P. idahoensis, approximately 1/6 of the models (22

of 143) were represented in the posterior distribution of

the full analyses at greater than random (>0.016) levels.
As most of the models had some type of gene flow and

expansion, but were either isolation or island models,

we divided (following Fagundes et al. 2007) this set into

two groups (island and isolation), conducted another

rejection step in each and compared the best models.

After model comparison within each category, models

0033 and 1023 were retained with the highest PP among

the island and isolation models, respectively (Table 4).

When these two models were compared directly, the

isolation model (1023) was substantially better

(PP1023 > 0.9, depending on the threshold size), clearly

indicating that temporal divergence between the north-

ern and southern populations should be modeled.

However, it is also clear that within each set (i.e. the

island and isolation models), a number of models are

very similar in their support. While this does not influ-

ence the results of the one-to-one comparison of isola-

tion models to island models (BF > 9 for comparison of

either 1021, 1033 or 1032 to 0033), it does suggest that

we are limited in our ability to differentiate among the
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Fig. 5 Results from 143-model ABC analysis. Black bars are relative posterior probabilities. Dotted line is the prior probability. Solid

line is the average highest PP observed by random chance. Only the 5-model test models and models with the highest and lowest PP

are labelled for clarity. All model PP and MED values are in Table 3.
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Table 3 List of all 143 models included in analyses. Model = shmc

Model Parameters Mean SD Median

Posterior

probability

1030 s, hΑ = h1 = h2, m12, m21 0.792 1.124 0.000 0.024

1232 s, hΑ = h2, h1, m12, m21, c2 0.822 0.856 0.772 0.007

1200 s, hΑ = h2, h1 0.836 0.985 0.499 0.004

1222 s, hΑ = h2, h1, m21, c2 0.846 0.982 0.542 0.006

1220 s, hΑ = h2, h1, m21 0.849 0.957 0.647 0.006

1231 s, hΑ = h2, h1, m12, m21, c1 0.863 0.877 0.859 0.006

1221 s, hΑ = h2, h1, m21, c1 0.870 0.878 0.862 0.011

1031 s, hΑ = h1 = h2, m12, m21, c1 0.886 1.133 0.000 0.020

1230 s, hΑ = h2, h1, m12, m21 0.917 0.937 0.880 0.006

1033 s, hΑ = h1 = h2, m12, m21, c1, c2 0.923 1.170 0.000 0.018

0131 hΑ = h1, h2, m12, m21, c1 0.930 1.024 0.779 0.007

0130 hΑ = h1, h2, m12, m21 0.949 0.881 1.055 0.010

1023 s, hΑ = h1 = h2, m21, c1, c2 0.956 1.154 0.000 0.024

1201 s, hΑ = h2, h1, c1 0.975 1.026 0.866 0.006

0030 hΑ = h1 = h2, m12, m21 0.977 1.210 0.000 0.024

1211 s, hΑ = h2, h1, m12, c1 0.990 1.042 0.927 0.007

0020 hΑ = h1 = h2, m12, m21 0.991 1.264 0.000 0.017

1132 s, hΑ = h1, h2, m12, m21, c2 0.995 0.981 0.986 0.007

0031 hΑ = h1 = h2, m12, m21, c1 0.996 1.303 0.000 0.020

0022 hΑ = h1 = h2, m21, c2 1.003 1.241 0.000 0.025

1131 s, hΑ = h1, h2, m12, m21, c1 1.011 0.967 1.013 0.004

1032 s, hΑ = h1 = h2, m12, m21, c2 1.013 1.212 0.000 0.031

1212 s, hΑ = h2, h1, m12, c2 1.015 0.986 1.083 0.003

1233 s, hΑ = h2, h1, m12, m21, c1, c2 1.021 0.946 1.121 0.010

1203 s, hΑ = h2, h1, c1, c2 1.024 1.058 1.002 0.010

0233 hΑ = h2, h1, m12, m21, c1, c2 1.026 0.985 1.118 0.004

1110 s, hΑ = h1, h2, m12, c1 1.030 1.003 1.118 0.007

0222 hΑ = h2, h1, m21, c2 1.031 1.112 0.921 0.008

1130 s, hΑ = h1, h2, m12, m21 1.031 0.976 1.084 0.006

0112 hΑ = h1, h2, m12, c2 1.032 0.991 1.121 0.007

0032 hΑ = h1 = h2, m12, m21, c2 1.033 1.212 0.000 0.020

0110 hΑ = h1, h2, m12, c1 1.034 1.031 1.070 0.004

1020 s, hΑ = h1 = h2, m12, m21, c1, c2 1.035 1.196 0.000 0.015

0012 hΑ = h1 = h2, m12, c2 1.038 1.272 0.000 0.018

1213 s, hΑ = h2 = h1, m12, c1, c2 1.041 1.053 1.121 0.003

0220 hΑ = h2, h1, m21 1.041 0.965 1.121 0.010

1013 s, hΑ = h1 = h2, m12, c1, c2 1.042 1.227 0.543 0.024

0231 hΑ = h2, h1, m12, m21, c1 1.048 1.104 0.997 0.007

1111 s, hΑ = h1, h2, m12, c1 1.050 1.027 1.098 0.013

0013 hΑ = h1 = h2, m12, c1, c2 1.056 1.254 0.000 0.021

0133 hΑ = h1, h2, m12, m21, c1, c2 1.057 1.107 1.028 0.001

0033 hΑ = h1 = h2, m12, m21, c1, c2 1.059 1.289 0.000 0.031

1002 s, hΑ = h1 = h2, c2 1.084 1.261 0.000 0.008

1331 s, hΑ, h1 = h2, m12, m21, c1 1.098 1.093 1.081 0.000

0132 hΑ = h1, h2, m12, m21, c2 1.101 0.991 1.129 0.007

0210 hΑ = h2, h1, m12 1.102 1.111 1.040 0.001

1321 s, hΑ, h1 = h2, m21, c1 1.108 1.012 1.124 0.000

1123 s, hΑ = h1, h2, m21, c1, c2 1.118 1.094 1.121 0.003

1021 s, hΑ = h1 = h2, m21, c1 1.119 1.323 0.000 0.036

1113 s, hΑ = h1, h2, m12, c1, c2 1.132 1.042 1.129 0.003

1010 s, hΑ = h1 = h2, m12 1.135 1.284 0.558 0.013

1112 s, hΑ = h1, h2, m12, c1 1.135 0.943 1.137 0.006

1101 s, hΑ = h1, h2, c1 1.136 1.048 1.129 0.006

1011 s, hΑ = h1 = h2, m12, c1 1.148 1.274 0.739 0.021

0023 hΑ = h1 = h2, m21, c1, c2 1.154 1.311 0.500 0.020
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Table 3 Continued

Model Parameters Mean SD Median

Posterior

probability

0230 hΑ = h2, h1, m12, m21 1.172 1.022 1.135 0.003

0321 hΑ, h1 = h2, m12, m21, c1 1.173 1.106 1.129 0.003

1000* s, hΑ = h1 = h2 1.178 1.261 0.971 0.015

1202 s, hΑ = h1 = h2, c2 1.180 1.163 1.124 0.004

0223 hΑ = h2, h1, m21, c1, c2 1.181 1.173 1.124 0.007

1001 s, hΑ = h1 = h2, c1 1.187 1.328 0.752 0.021

0011 hΑ = h1 = h2, m12, c1 1.198 1.298 0.931 0.022

0213 hΑ = h2, h1, m12, c1, c2 1.199 1.117 1.135 0.004

1102 s, hΑ = h1, h2, c2 1.205 1.217 1.129 0.004

1121 s, hΑ = h1, h2, m21, c1 1.211 1.141 1.137 0.010

1022 s, hΑ = h1 = h2, m21, c2 1.214 1.308 1.011 0.021

1012 s, hΑ = h1 = h2, m12, c2 1.270 1.324 1.129 0.021

1332 s, hΑ, h1 = h2, m12, m21, c2 1.271 1.159 1.179 0.003

1322 s, hΑ, h1 = h2, m21, c2 1.280 1.087 1.233 0.000

0212 hΑ = h2, h1, m12, c2 1.281 1.181 1.140 0.001

1312 s, hΑ, h1 = h2, m12, c2 1.286 1.105 1.221 0.001

1323 s, hΑ, h1 = h2, m21, c1, c2 1.312 1.075 1.239 0.001

0123 hΑ = h1, h2, m21, c1, c2 1.312 1.189 1.192 0.007

1003 s, hΑ = h1 = h2, c1, c2 1.321 1.443 1.122 0.007

0313 hΑ, h1 = h2, m12, c1, c2 1.327 1.207 1.182 0.001

1433 s, hΑ, h1, h2, m12, m21, c1, c2 1.327 0.998 1.269 0.000

0312 hΑ, h1 = h2, m12, c2 1.328 1.201 1.209 0.004

0211 hΑ = h2, h1, m12, c1 1.333 1.195 1.256 0.006

1320 s, hΑ, h1 = h2, m21 1.336 1.235 1.180 0.001

1403 s, hΑ, h1, h2, c1, c2 1.350 1.011 1.298 0.000

1330* s, hΑ, h1 = h2, m12, m21 1.351 1.274 1.225 0.006

0323 hΑ, h1 = h2, m21, c1, c2 1.353 1.170 1.259 0.003

1333 s, hΑ, h1 = h2, m12, m21, c1, c2 1.357 1.127 1.277 0.003

1103 s, hΑ = h1, h2, c1, c2 1.400 1.186 1.408 0.003

1423 s, hΑ, h1, h2, m21, c1, c2 1.408 1.502 1.182 0.001

0331 hΑ, h1 = h2, m12, m21, c1 1.424 1.314 1.368 0.000

0311 hΑ, h1 = h2, m12, c1 1.475 1.353 1.353 0.003

1432 s, hΑ, h1, h2, m12, m21, c2 1.500 1.297 1.360 0.000

1402 s, hΑ, h1, h2, c2 1.543 1.101 1.545 0.003

0413 hΑ, h1, h2, m12, c1, c2 1.570 1.139 1.545 0.006

0412 hΑ, h1, h2, m12, c2 1.575 1.172 1.516 0.001

0322 hΑ, h1 = h2, m21, c2 1.591 1.493 1.481 0.001

1303 s, hΑ, h1 = h2, c1, c2 1.591 1.303 1.610 0.003

1301 s, hΑ, h1 = h2, c1 1.621 1.428 1.554 0.001

1300* s, hΑ, h1 = h2 1.630 1.342 1.562 0.004

1313 s, hΑ, h1 = h2, m12, c1, c2 1.676 3.419 1.164 0.007

0423 hΑ, h1, h2, m21, c1, c2 1.710 1.358 1.593 0.000

0430 hΑ, h1, h2, m12, m21 1.715 1.294 1.620 0.000

0113 hΑ, h1 = h2, m12, c1, c2 1.715 5.727 1.068 0.004

0411 hΑ, h1, h2, m12, c1 1.717 1.259 1.665 0.003

0422 hΑ, h1, h2, m21, c2 1.759 1.417 1.614 0.000

1401 s, hΑ, h1, h2, c1 1.781 1.835 1.505 0.001

0433 hΑ, h1, h2, m12, m21, c1, c2 1.843 1.773 1.597 0.000

0021 hΑ = h1 = h2, m21, c1 1.867 4.813 0.673 0.014

0221 hΑ = h2, h1, m21, c1 1.934 6.915 0.937 0.006

1400 s, hΑ, h1, h2 2.098 1.697 1.899 0.000

0232 hΑ = h2, h1, m12, m21, c2 2.186 7.859 1.121 0.007

0122 hΑ = h1, h2, m21, c2 2.356 7.532 1.254 0.006

1122 s, hΑ = h1, h2, m21, c2 2.551 8.798 1.283 0.003

1133 s, hΑ = h1, h2, m12, m21, c1, c2 2.748 12.927 0.814 0.008

1410 s, hΑ, h1, h2, m12 2.790 7.890 1.673 0.003
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(albeit similar) isolation models that include some type

of migration and population expansion using ABC. This

result may be explained by parameter estimates made

under similar models. Parameter estimates of s under

the optimal model (Table 2) place divergence between

the northern and southern populations at approxi-

mately 300 000 generations before present, with gene

flow from the southern to the northern populations

(m21 = 2.858). Each population experiences expansion,

but the rate is greater in the north (3.776) than in the

south (1.678). Similar parameter values are estimated

using models such as 1032 and 1021.

Posterior predictive simulation

Posterior predictive simulation was conducted to assess

the nonrelative fit between the various models and the

empirical data. MEDs of all models are shown in Table 3

(see also Fig. S1, Supporting Information). Two results are

notable: the models with the highest PP generally have

low MED scores, thus indicating that the data generated

from the posterior distribution of these models are a close

match to the empirical data. However, there is no signifi-

cant correlation (R2 = 0.02; P = 0.07; Appendix S2, Sup-

porting Information) between PP and MED. Furthermore,

some models (i.e. model 0010) that have comparatively

poor MED scores nevertheless exhibit PP that exceeds the

prior expectation (0.007). This highlights the stochasticity

inherent to ABC; with a large number of models and a

prior distribution of finite size, some parameter draws

from some models will occasionally generate data that are

similar to the target, even if the model is not a close match

to the true model. While this assessment is one justifica-

tion for the posterior predictive simulations, another is

Table 3 Continued

Model Parameters Mean SD Median

Posterior

probability

1420 s, hΑ, h1, h2, m21 2.819 9.142 1.557 0.001

0330 hΑ, h1 = h2, m12, m21 3.156 11.980 1.608 0.000

0431 hΑ, h1, h2, m12, m21, c1 3.388 12.338 1.687 0.001

0432 hΑ, h1, h2, m12, m21, c2 3.769 15.818 1.606 0.003

1210 s, hΑ = h2, h1, m12 4.007 21.699 0.880 0.010

0310 hΑ, h1 = h2, m12 4.405 20.648 1.670 0.001

0421 hΑ, h1, h2, m21, c1 4.761 18.586 1.563 0.000

1223 s, hΑ = h2, h1, m21, c1, c2 4.813 27.942 0.880 0.007

0410 hΑ, h1, h2, m12 4.840 19.483 1.684 0.000

0333 hΑ, h 1 = h2, m12, m21, c1, c2 4.841 24.764 1.304 0.004

1411 s, hΑ, h1, h2, m12, c1 4.949 22.725 1.182 0.000

0320 hΑ, h1 = h2, m21 5.184 25.275 1.771 0.000

1431 s, hΑ, h1, h2, m12, m21, c1 5.539 28.987 1.440 0.000

1421 s, hΑ, h1, h2, m21, c1 5.618 22.805 1.418 0.001

1311 s, hΑ, h1 = h2, m12, c1 5.721 32.177 1.137 0.001

0111 hΑ = h1, h2, m12, c1 5.804 32.950 1.143 0.008

0420 hΑ, h1, h2, m21 6.037 28.946 1.629 0.001

1412 s, hΑ, h1, h2, m12, c2 6.186 23.177 1.611 0.003

0010 hΑ = h1 = h2, m12 6.223 36.293 0.000 0.017

1413 s, hΑ, h1, h2, m12, c1, c2 8.209 48.083 1.344 0.000

1430 s, hΑ, h1, h2, m12, m21 8.661 50.499 1.516 0.001

1422 s, hΑ, h1, h2, m21, c2 9.269 45.089 1.344 0.006

0121 hΑ = h1, h2, m21, c1 9.369 56.607 1.327 0.004

1302 s, hΑ, h1 = h2, c2 9.386 44.243 1.233 0.004

0120 hΑ = h1, h2, m21 9.466 57.924 1.189 0.004

1310 s, hΑ, h1 = h2, m12 9.812 60.333 1.206 0.000

1100 s, hΑ = h1, h2 10.795 68.438 1.121 0.007

0332 hΑ, h1 = h2, m12, m21, c2 13.053 82.999 1.415 0.004

1120 s, hΑ = h1, h2, m21 14.667 54.818 1.365 0.007

X0X1* hΑ, c1 16.013 5.576 15.576 0.000

X0X0* hΑ 17.048 7.013 16.115 0.000

0000 hΑ = h1 = h2 116.825 42.505 116.338 0.000

Model numbering scheme is followed by the parameters included in that model (see Fig. 2). They are ranked from lowest to highest

MED including the SD and median. The initial five-model ABC test models are indicated by an asterisk ‘*’. The 22 models with PP

above the random expectation from the 143-model test are bolded.
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that the MED values allow additional evaluation of the

importance of different classes of parameters.

Models were partitioned into parameter classes before

comparing the mean of the MEDs per parameter class

(Fig. S1, Supporting Information). For example, when

models are grouped into island, panmictic and isolation

models, the isolation model has a mean MED (2.39) far

lower than that of the panmictic (16.53) and island (4.30)

models. Similarly, models with no change in h have

lower MED (1.28) than those that include changes in this

parameter (1.43 and 2.86 for 1 change in h; 2.97 and 3.56

for changes in both). The relationship between gene flow

and population expansion appears to be more complex.

Models with migration parameterized either in one or in

both directions have MEDs (4.47, 2.79 and 2.046) that are

all much better than models without migration (7.67).

When models were grouped by the population expansion

parameters, the average MEDs were similar so long as

migration was also included in the model (1.72 for expan-

sion in each population, compared to 6.49 for expansion

without migration and 2.24 or 2.32 for expansion in only

one population). This supports the idea that several

models, similar in their parameterization, are reasonable

for the empirical system.

Because it is also reasonable to speculate that the

PP of the true model would be positively correlated

with the level of differentiation among models in the

comparison set, we conducted an analysis where the

difference among models was enumerated (i.e. model

0000 and model 1000 were more similar than model

0000 and model 1234 due to similarity of 3/4 parame-

ter classes) and compared to the PP of the generating

model. Results do not indicate that such a correlation

exists (R2 < 0.01, P = 0.88), suggesting that a more

subtle interaction among the model types and

assumed parameter values contributes towards the

accuracy in identifying the true models in the simula-

tion testing.

Density plots for each summary statistic from the

ABC vector were plotted individually for three models

(0033, 1000 and 1023) using R 2.15.1 to assess model ade-

quacy and any bias in the summary statistics used for

the ABC analysis (Fig. 6). Each summary statistic for the

three models shares a similar distribution and the

empirical estimates are well within this distribution. If

the summary statistics were biased, we would expect

the distribution for a given summary statistic to be dif-

ferent under a different model. If the models could not

somehow represent the data, the empirical summary

statistic would fall outside the PPS distribution. Further-

more, the correlation between the number of parameters

and the PP (R2 = 0.06, P = 0.002) and between the num-

ber of parameters and the MED (R2 = 0.04, P = 0.01) is

extremely weak; this bolsters the argument of Beaumont

et al. (2010) that the dimensionality of models does not

influence the calculation of the PP in phylogeographic

model comparison.

Conclusions

Our ABC model selection procedure enabled us to iden-

tify a demographic model that is both a good fit to the

data (MED1023 = 0.956; final PP1023 > 0.9) and consistent

with known facts regarding the geologic history of the

inland temperate rain forest. Plethodon idahoensis has

occupied this region for millions of years (Carstens et al.

2005), but recurrent glaciation during the Pleistocene

forced the species into two refugia located within the

clearwater river drainage. Like many other temperate

species (Hewitt 2004), available data indicate that the

Pleistocene climatic fluctuations had a substantial impact

on the population genetic structure of P. idahoensis. Our

results imply strongly that these refugia were separated

latitudinally (i.e. into northern and southern refugia) and

that this separation is responsible for the northern–south-

ern population genetic structure observed here. We also

Table 4 Results of the nested model comparison are shown, as

well as the final comparison. Models with the highest PP are

highlighted in bold

Model PP BF

Divergence models

1001 0.07 2.6

1011 0.04 4.5

1012 0.05 3.6

1013 0.05 3.6

1021 0.11 1.6

1022 0.11 1.6

1023 0.18 1

1030 0.07 2.6

1031 0.07 2.6

1032 0.09 2.0

1033 0.14 1.3

Island models

0010 0.08 2.3

0011 0.08 2.3

0012 0.12 1.5

0013 0.04 4.5

0020 0.10 1.8

0022 0.12 1.5

0023 0.06 3.0

0030 0.08 2.3

0031 0.08 2.3

0032 0.04 4.5

0033 0.18 1

Final comparison

1023 >0.9

0033 <0.1
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Fig. 6 Density plots for each summary statistic in the vector used for all analyses for the following models. Model 0033: island with

no change in h, migration in both directions and expansion in both populations. Model 1000: isolation model with no change in h, no
migration and no expansion. Model 1023: isolation model with no change in h, migration from population 1 to 2 and expansion in

both populations. Black arrows indicate where the empirical estimate falls.
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find support for population expansion, particularly in the

northern populations, and the results suggest that gene

flow likely occurs over the ridge separating the Lochsa

and Selway rivers in central Idaho.

Researchers have been reluctant to adopt demo-

graphic model choice with ABC as a tool for phylogeo-

graphic inference, and there are few empirical

examples of investigations that rely on this approach. It

is unlikely that this reluctance is due to a mistrust of

ABC methods in general, or to latent concerns about

the applicability of the methods, as many researchers

have utilized msBayes, arguably a more complex and

(due to the requirement of comparative data) less appli-

cable method developed by Hickerson et al. (2007).

Rather, researchers in nonmodel systems may find it

difficult to parameterize models due to a lack of prior

information, and thus are hesitant to rely only on their

intuition to develop a prior set of models to analyse.

Model choice with ABC offers a great deal of promise

to phylogeographic investigations in nonmodel systems,

but only if the models in the comparison set can be

identified in a systematic (and nonbiased) manner. We

illustrate here that the posterior probabilities in these

comparisons are dependent on the composition of the

model set, and develop an approach for identifying

models for inclusion in a model set that allows a wide

range of models to be considered. We first parameter-

ized a large set of possible models, then conducted a

preliminary comparison of all models, before selecting

only those models with a greater PP than expected by

chance for inclusion in the final comparison. PPS was

used to check for model adequacy and bias in sum-

mary statistics. While this approach may be criticized

as being ad hoc, it is decidedly less so than one that

only considers models proposed by previous work or

chooses them based only on the intuition of research-

ers; all models in such sets could be poor (as in our

empirical example) but one could nevertheless receive

a high relative posterior probability. Our work demon-

strates that careful consideration of the composition of

the model set is vital to ABC model choice experiments

and that more attention should be devoted to this

issue.
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