MOLECULAR ECOLOGY

Do ecological communities disperse across biogeographic barriers as a unit?

Journal:	Molecular Ecology
Manuscript ID	MEC-17-0003
Manuscript Type:	Original Article
Date Submitted by the Author:	01-Jan-2017
Complete List of Authors:	Satler, Jordan; The Ohio State University, Evolution, Ecology, and Organismal Biology Carstens, Bryan; The Ohio State University, Evolution, Ecology and Organismal Biology
Keywords:	Phylogeography, RAD sequencing, co-diversification, allele frequency spectrum, <i>Sarracenia</i>
	·

1	RUNNING HEAD: DIVERSIFICATION ACROSS A BIOGEOGRAPHIC BARRIER
2 3	
4	
5	
6	Do ecological communities disperse across biogeographic barriers as a unit?
7 8	
9	
10	
11	Jordan D. Satler ^{1,2,*} and Bryan C. Carstens ¹
12	
13	
14 15	
16	
17	
18	
19	¹ Department of Evolution, Ecology and Organismal Biology,
20	The Ohio State University, Columbus, OH 43210, USA
21	
22	² Department of Ecology, Evolution, and Organismal Biology,
23	Iowa State University, Ames, IA 50011, USA
24	
25	
23	
26	*Corresponding Author:
27	Department of Ecology, Evolution, and Organismal Biology, 251 Bessey Hall,
28	Iowa State University, Ames, IA 50011, USA
29	Email: jordansatler@gmail.com
30	
31	
32	
33	Keywords: RAD sequencing, phylogeography, co-diversification, allele frequency
34	spectrum, Sarracenia

Abstract

Biogeographic barriers have long been implicated as drivers of biological diversification, but how these barriers influence co-occurring taxa can vary depending on factors intrinsic to the organism and in their relationships with other species. Due to the interdependence among taxa, ecological communities present a compelling opportunity to 40 explore how interactions among species may lead to a shared response to historical 41 events. Here we collect single nucleotide polymorphism (SNP) data from five commensal arthropods associated with the Sarracenia alata carnivorous pitcher plant, and test for co-42 43 diversification across the Mississippi River, a major biogeographic barrier in the 44 southeastern United States. Population genetic structure in three of the ecologically 45 dependent arthropods mirrors that of the host pitcher plant, with divergence time 46 estimates suggesting two of the species (the pitcher plant moth *Exvra semicrocea* and a flesh fly *Sarcophaga sarraceniae*) dispersed synchronously across this barrier along with 47 the pitcher plant. Patterns in population size and genetic diversity suggest the plant and 48 49 ecologically dependent arthropods dispersed from east to west across the Mississippi 50 River. In contrast, species less dependent on the plant ecologically show discordant 51 phylogeographic patterns. This study demonstrates that ecological relationships may be 52 an important predictor of co-diversification, and supports recent suggestions that 53 organismal trait data should be prominently featured in comparative phylogeographic 54 investigations.

55	Introduction
56	Comparative phylogeographic investigations can elucidate the historical processes
57	that shape and structure biological diversity. A common approach is to infer population
58	genetic structure and estimate parameters in a geographic context that devotes particular
59	attention to biogeographic barriers. In such a context, similarities in the demographic
60	histories across species are indicative of a shared response to landscape changes (Avise et
61	al. 1987; Sullivan et al. 2000), while idiosyncratic patterns suggest an independent
62	response. Although this framework is enticing in its simplicity, the details of how to
63	compare demographic histories across species are key. Initial approaches for this
64	comparison utilized gene trees, with similarity in pattern being suggestive of a common
65	response to a historical event (Avise 2000; Arbogast & Kenagy 2001). While shared
66	spatial patterns can indicate a similar history, temporal information is necessary to
67	demonstrate a shared response in time (Edwards & Beerli 2000). Subsequent researchers
68	have generally taken one of two approaches, either by estimating divergence times
69	independently from each species for comparison (e.g., Carstens et al. 2005; Smith et al.
70	2012) or by using probabilistic models to estimate the number of divergence episodes
71	(e.g., Hickerson et al. 2006, 2007). In addition to methodological considerations such as
72	these, the nature of the biogeographic barrier itself is an important consideration.
73	Hard biogeographic barriers contribute to the diversification of biota by blocking
74	the movement of individuals, providing physical barriers to gene flow, and provide an
75	opportunity to understand how communities responded to a shared historical event (e.g.,
76	Pyron & Burbrink 2010). One compelling example is the formation of the Isthmus of
77	Panama, which occurred around 3 Ma (Coates et al. 2005; but see Bacon et al. 2015 for

Page 4 of 48

78 an alternative interpretation). The formation of the isthmus drastically altered marine 79 environments on the Pacific and Caribbean sides and represents a hard barrier for marine 80 organisms (Leigh *et al.* 2014), with phylogeographic studies demonstrating that most 81 germinate species diverged prior to the formation of the barrier (Cowman & Bellwood 82 2013). The investigation also demonstrates that divergence was asynchronous, suggesting 83 that intrinsic differences across species played a role in their response to this geological 84 process (Knowlton & Weigt 1998; Lessios 2008). Another example of a hard barrier is in 85 Baja California, where phylogeographic breaks are recovered in many taxa in the vicinity 86 of the Vizcaino Desert 28–30° N latitude (e.g., Riddle et al. 2000; Garrick et al. 2009). 87 Upton and Murphy (1997) proposed the presence of a mid-peninsular seaway 1 Ma to 88 explain genetic patterns recovered in the side-blotched lizards (genus *Uta*), and although 89 support is mixed for the presence of this seaway (e.g., Hafner & Riddle 2005; Crews & 90 Hedin 2006; Leaché et al. 2007; Lindell et al. 2006), phylogeographic data from many 91 taxa support a vicariant event in this region. Like the rise of the Isthmus of Panama, the 92 formation of this putative seaway likely occurred after the ancestor of these species 93 occupied Baja California.

Other biogeographic barriers are more porous. For example, Wallace (1852) observed discontinuities in the distributions of various monkey species in the Amazon basin, and proposed the riverine barrier hypothesis, where rivers act as barriers promoting genetic and taxonomic divergence. Although rivers are physical barriers for some taxa, the degree to which this is true is dependent on both intrinsic species' characteristics and characteristics of the river such as flow rate and direction, either of which may fluctuate over time. Consequently, support for riverine barriers has been mixed, with some

101	investigations supporting major rivers as biogeographic barriers (e.g., Burbink <i>et al.</i>
102	2000; Jackson & Austin 2010) and others demonstrating their permeability (e.g., da Silva
103	& Patton 1998; Funk et al. 2007).
104	Major rivers dominate the landscape of the southeastern United States, including
105	the largest river system in North America, the Mississippi River (Coleman 1988). The
106	Mississippi River has its origins in the Mesozoic era, has been present (in some form)
107	since the Jurassic (Mann & Thomas 1968), and more recently has been influenced by sea
108	level fluctuations (Coleman 1988) and dramatic changes in the course of the river
109	channel (Mann & Thomas 1968). While this ancient river has been identified as a
110	biogeographic barrier in a variety of taxa (reviewed in Soltis et al. 2006), it is necessarily
111	porous, as many species belonging to clades that have arisen since the Jurassic are
112	distributed on both sides of the river. The inherent permeability of this barrier could be
113	influenced by intrinsic factors, such as species-specific dispersal abilities, or extrinsic
114	factors, such as oxbow lake formation that may have the effect of transferring land from
115	one side of the river to the other (e.g., Gascon et al. 2000). Taken as a whole, the age and
116	permeability of the Mississippi River necessitates that east-west divergence in terrestrial
117	taxa would be due to dispersal and colonization, not vicariance (Pyron & Burbrink 2010).
118	Since intrinsic species traits directly influence dispersal and colonization, riverine
119	barriers provide an ideal setting for investigating how such traits influence biogeographic
120	patterns.
121	Here we utilize the Sarracenia alata pitcher plant community to investigate
122	whether intrinsic species traits dictate species response to porous biogeographic barriers.

123 The carnivorous pitcher plant *S. alata* is restricted to bogs and fens in longleaf pine

Page 6 of 48

124	savannahs along the Gulf Coast from eastern Texas to western Alabama, with a
125	distribution bisected by the Mississippi River and Atchafalaya basin. Leaves of the plant
126	are pitcher-shaped, an adaptation for the capture and digestion of prey (e.g., Darwin
127	1875; Ellison & Gotelli 2001), and also provide habitat for non-prey species (inquilines)
128	that interact ecologically with the plant (reviewed in Adlassnig et al. 2011; also see
129	Folkerts 1999). Some inquilines rely upon the pitcher plant for their entire life cycle (e.g.,
130	moths, flesh flies) while others are opportunistic predators that intercept prey from the
131	plant (e.g., spiders) but are not restricted to the unique habitat provided by S. alata. The
132	varying degrees of dependence on the plant led Satler and Carstens (2016) to suggest that
133	ecological relationships may predict the degree of phylogeographic congruence in this
134	community. If true, then the demographic history of dependent inquilines should reflect
135	that of the plant, while the demography of the opportunistic inquilines should reflect
136	intrinsic species traits related to dispersal ability.
137	Investigations into S. alata have demonstrated that genetic diversity in the plant is
138	structured largely due to the influence of multiple rivers that divide its range into several
139	regions. Results from chloroplast DNA, microsatellites, and SNP data (Koopman &
140	Carstens 2010; Zellmer et al. 2012) indicate that population genetic structure is largely
141	promoted by major rivers, and estimates of the pattern of diversification demonstrate that
142	the deepest divergence within S. alata occurs on either side of the Mississippi River,
143	dates to the mid-Pleistocene (Zellmer et al. 2012), and may be indicative of independent
144	evolutionary lineages (Carstens & Satler 2013). In addition, evidence suggests that the
145	pitcher plant has a center of origin in the east, and dispersed across the Mississippi River
146	in an east-to-west manner (Zellmer et al. 2012).

147	We sample five arthropod species: a moth, two flesh flies, and two spiders (Table
148	1). Inquilines include the moth, which spends its entire life cycle in the pitcher plant
149	leaves (Jones 1921; Stephens et al. 2011), and the flesh flies, which are also tightly
150	associated with the plant leaves (Dahlem & Naczi 2006). Notably, both the moth and flies
151	are poor flyers and dispersal limited (Folkerts 1999; Stephens & Folkerts 2012;
152	Krawchuk & Taylor 2003; Rasic & Keyghobadi 2012). In contrast, the spider species
153	sampled here are widespread and opportunistic predators, abundant in the habitat but
154	evidently not dependent on S. alata, since either can be found in a variety of other
155	microhabitat in the region.
156	
157	Community diversification hypotheses
158	Here we test the null hypothesis (H_0) is that there is no correlation between
159	ecological interaction and a shared evolutionary history. The null predicts that we should
160	observe discordant phylogeographic patterns among the species, and would suggest that
161	ecological associations are fluid in time and do not influence the evolutionary history of a
162	particular species. Alternatively (H1), it may be that strong ecological interactions result
163	in a shared evolutionary history, in which case the phylogeographic inferences in the
164	obligate inquilines (moth and flies) should reflect that of the host plant, while the spiders
165	would display discordant evolutionary patterns. This alternative hypothesis follows Smith
166	et al. (2011), who proposed that evolutionary communities of species that are ecological
167	interdependent may exist. A corollary of this hypothesis is that divergence time estimates
168	from the obligate mutualists should postdate estimates from S. alata, reflecting the need
169	for suitable habitat following dispersal across the Mississippi River. A third hypothesis

170 (H_2) is that species-specific traits influence evolutionary patterns, such that similar 171 species would be expected to share population genetic structure and demographic 172 patterns (e.g., Papadopoulou & Knowles 2016). Here we would predict that similar 173 patterns would be seen within taxonomic groups (e.g., flies, spiders), but would be 174 dissimilar across the groups. These hypotheses can be tested using estimates of 175 population genetic structure and demographic parameters. 176 177 **Material and Methods** 178 Taxon sampling 179 Five arthropod species were collected from 12 possible localities throughout the 180 distribution of *S. alata* (Fig. 1; Table 1; see Table S1 for detailed sampling information). 181 Arthropods included a moth (*Exyra semicrocea*), two flesh flies (*Sarcophaga*) 182 sarraceniae, Fletcherymia celarata), and two spiders (Misumenoides formosipes, 183 *Peucetia viridans*). All individuals were captured in the vicinity of the plant, usually 184 resting on or just under the lid of the pitcher. For the flesh flies, males were pinned in the 185 field with their genitalia extracted to confirm proper identification. Of those specimens, 186 three legs were removed and placed in 95% EtOH for DNA preservation. All other 187 specimens were preserved directly in 95% EtOH for DNA preservation. 188 189 **DNA** sampling preparation and processing

Genomic DNA was extracted from the specimens (either leg tissue or full body
soakings) using a Qiagen DNeasy kit. Between 24 and 26 individuals were selected per
species for sequencing, with samples that span the distribution of the species and roughly

193 equal numbers on either side of the Mississippi River (see Table S1). A double digest 194 restriction-site associated DNA sequencing (ddRADseq) protocol (modified from 195 Peterson et al. 2012) was used to generate genomic sequences. Specifically, genomes 196 were digested with two restriction enzymes (SbfI and MspI) to reduce the number (but 197 generate higher coverage) of the potential suite of homologous loci. Following restriction 198 enzyme digest and ligation of internal barcodes, libraries were amplified through 199 polymerase chain reaction. After confirming amplification of the sequence libraries via 200 gel electrophoresis, size selection was conducted with a Blue Pippin (Sage Sciences) 201 targeting fragments between 300 and 600 base pairs. Samples were quantified using a 202 bioanalyzer and qPCR to confirm quality library prep, and sequenced using an Illumina 203 HiSeq with single end 100 base pair reads. 204 Following demultiplexing, raw sequence reads were filtered with AlienTrimmer 205 v0.4.0 (Criscuolo & Brisse 2013) to remove reads with adapter contamination. All 206 retained reads were then trimmed to 80 base pairs with the FASTX-Toolkit v0.0.14 207 (Gordon & Hannon 2010) to account for uneven barcode lengths and remove potentially 208 low-quality base pairs towards the end of sequences. Next, sequence reads were analyzed 209 with Pyrad v3.0.66 (Eaton 2014) using parameter settings that were consistent for all five 210 species. Pyrad is an automated pipeline that takes as input raw sequence reads and 211 outputs loci, alleles, and SNPs. Base calls with a Phred score below 20 were replaced 212 with Ns; up to four Ns were allowed for a read to be retained. A clustering threshold of 213 88% was used to assemble reads into loci. RAD sequencing is prone to missing data due 214 to mutations in the restriction enzyme sites as well as allelic dropout, and this missing

215 data can bias parameter estimates in downstream analyses (Arnold et al. 2013). However,

because retaining only those loci with 100% coverage can also bias parameter estimates

217 (because such loci are likely to be evolving more slowly than genome-wide averages), we 218 allowed for some missing data in our analysis and retained loci with a minimum of 75% 219 coverage across individuals. 220 221 **Population genetic structure** 222 To infer population genetic structure within the species, we used STRUCTURE 223 v2.3.4 (Pritchard *et al.* 2000), which assigns individuals into clusters by maximizing 224 linkage equilibrium within clusters and minimizing linkage disequilibrium between 225 clusters. Our analyses were conducted at the K = 2 clustering level, reflecting our 226 understanding that populations of S. alata east and west of the Mississippi River 227 comprise two distinct lineages (Zellmer et al. 2012; Carstens & Satler 2013). Our 228 prediction, particularly for obligate commensal species, is that genetic structure at this 229 level will also reflect this east-west division of habitat. For each species, we converted 230 allelic data into haplotypes at each locus, utilizing the information contained in linked 231 SNPs when more than one SNP was present within a locus. If any allele contained one or 232 more Ns, we adopted the conservative approach of treating this sequence as missing due 233 to ambiguity in allelic assignment. Analyses were conducted using an admixture model 234 with correlated allele frequencies, sampling location information for each species, a burnin of 1 X 10^5 generations and subsequent sampling for 5 X 10^5 generations. Each analysis 235 236 was repeated 10 times, and results were processed and summarized with the pophelper

237 package (Francis 2016) in R (R Core Team 2015).

216

238	An Analysis of Molecular Variance (AMOVA; Excoffier et al. 1992) was
239	conducted on each species to assess the level of genetic partitioning across the landscape.
240	Specifically, we tested for genetic partitioning (i) within each locality, (ii) between
241	localities on either side of the Mississippi River, and (iii) within each side of the river.
242	STRUCTURE haplotype files were converted to Arlequin files using PGDspider v2.0.7.1
243	(Lischer & Excoffier 2012). AMOVA analyses were conducted in Arlequin v3.5.1.2
244	(Excoffier et al. 2005), with distance matrices calculated using the number of different
245	alleles per locus and 10,000 permutations to assess significance.
246	In addition, summary statistics were calculated from the data with the python
247	library DendroPy v4.1.0 (Sukumaran & Holder 2010). These included number of
248	segregating sites, nucleotide diversity (π), Watterson's theta (Θ_w), and Tajima's D.
249	Samples were partitioned based on side of river (east or west), reflecting our
250	understanding of the diversification of the host pitcher plant.
251	
252	Estimating population divergence, population size, and gene flow
253	Phylogeographic concordance factors suggest that multiple arthropods are
254	concordant with S. alata (Satler & Carstens 2016). In order to explore this suggestion,
255	parameters including population divergence (τ), population size (N _e), and gene flow
256	(2Nm) were estimated from the SNP data in each species using allele frequency spectrum
257	(AFS) methods (Gutenkunst et al. 2009; Excoffier et al. 2013). One recently developed
258	method, fastsimcoal2 (FSC2; Excoffier et al. 2013), uses coalescent simulations to
259	calculate the likelihood of the observed AFS given a demographic model using the

261	computationally efficient and produces accurate parameter estimates (Excoffier et al.
262	2013). As models are user-specified, the flexibility of FSC2 makes it appealing to apply
263	to the analysis of data from non-model species where the correct model is unknown
264	(Thomé & Carstens 2016).
265	Model selection has become an integral part of phylogeography in large part
266	because the utility of parameter estimation to the inferences process relies on the
267	appropriateness of the analytical models (e.g., Fagundes et al. 2007; Carstens et al.
268	2013). Because populations of <i>S. alata</i> have been isolated on either side of the
269	Mississippi River for a considerable amount of time (Zellmer et al. 2012; Carstens &
270	Satler 2013), we assumed a two-population model, grouping samples on either side of the
271	biogeographic barrier into populations, but consider several models containing different
272	combinations of parameters (e.g., τ , N _e , 2Nm) in each species. FSC2 calculates a
273	composite likelihood with the assumption SNPs are in linkage equilibrium, and thus any
274	genetic linkage may bias this calculation and invalidate model comparisons. To satisfy
275	this assumption, we randomly selected one SNP per locus to generate an unlinked AFS.
276	We then conducted model-selection on seven variants of the isolation-with-migration
277	(IM) model (Fig. 2) using Akaike information criterion (AIC; Akaike 1974) and model
278	probabilities calculated following Burnham and Anderson (2002). Parameter estimates
279	were subsequently generated via model-averaging (i.e., weighted by the probabilities for
280	each of the models), allowing for estimates of a particular parameter to contribute to the
281	overall parameter estimate in proportion to its model probability. Since we were
282	concerned that reducing our data set to only unlinked SNPs might leave us with too few
283	SNPs to accurately estimate parameters of interest, we also estimated parameters using

284 the traditional IM model (Fig. 2C) for each species incorporating all of the SNPs. 285 Linkage among SNPs affects the calculation of the likelihood, not parameter estimation, 286 so linked SNPs are not expected to bias parameter estimation when a single model is 287 used. 288 Analyses were conducted with *fastsimcoal* v25221 (Excoffier *et al.* 2013). We 289 constructed a folded allele frequency spectrum from minor allele counts as we did not 290 have sequence data from outgroups. Fixed numbers of alleles for all populations are 291 required for generating the observed AFS, however, only including SNPs with 100% 292 coverage would drastically reduce (and likely bias) our sampling. To account for missing 293 data while maximizing the number of SNPs, we required that 75% of alleles were present 294 within each population (east and west) for the SNP to contribute to the AFS. Given these 295 criteria, building of the observed AFS took place in three ways: (i) if either population 296 had fewer alleles than the set threshold, that SNP was discarded, (ii) if either population 297 had the same number of alleles as the threshold, the allele frequencies were calculated 298 (for the total SNP) and the minor allele count was used in the AFS, (iii) if either 299 population had a greater number of alleles than the threshold, the alleles were subsampled 300 with replacement until the necessary number of alleles (matching the threshold) were 301 sampled, and then the minor allele was counted. For the SNP that met either criterion *ii* or 302 *iii*, the proper cell was populated in the AFS with the minor allele counts from each 303 population. Although this down sampling procedure allowed us to include more SNPs in 304 our analysis, it had the undesirable effect of subsampling some alleles such that they 305 appeared monomorphic in a particular subsampling replicate. To account for variation in 306 generating the observed AFS, we replicated the AFS building procedure 10 times.

Replication serves two purposes: (i) it accounts for variation in the subsampling process,
and (ii) allows us to generate confidence intervals on parameter estimates for across
species comparisons.

310 To convert parameter estimates to real values, we assumed a mutation rate of 8.4 311 X 10⁻⁹ estimated from *Drosophila* flies (Haag-Liautard *et al.* 2007). Species-specific 312 generation length estimates were gathered from the literature to scale parameters to real 313 values. Specifically, we used two generations per year for the moth (Moon *et al.* 2008) 314 and flies (Rango 1999; Rasic & Keyghobadi 2012), and one generation per year in the 315 spiders (Foelix 1982); we discuss later implications of uncertainty in these estimates. We 316 also counted the number of invariant sites in the sequence data to populate the 317 monomorphic cell. All FSC2 analyses were run on the Oakley cluster at the Ohio 318 Supercomputer Center (https://osc.edu). Each analysis (for each AFS replicate per model) 319 was repeated 50 times, to take into account stochasticity in the simulated AFSs (as 320 recommended by Excoffier et al. 2013). The run with the highest composite likelihood 321 was then selected as the best run (among the 50), and parameter estimates from these runs 322 were recorded. Custom python and bash scripts (available on Dryad; ####) were written 323 to generate the observed AFS, prepare each analysis, and collate and summarize the 324 results. 325 326

327

Results

328 DNA sequencing

329	We sequenced either 24 (S. sarraceniae, F. celarata, M. formosipes) or 26
330	(E. semicrocea, P. viridans) individuals of each species using two HiSeq lanes and a
331	partial MiSeq lane resulting in ~310 million sequence reads. Following demultiplexing
332	and quality control, we retained ~215 million reads for <i>de novo</i> assembly. Four
333	individuals were poorly sequenced (one each from F. celerata and P. viridans, and two
334	from <i>M. formosipes</i>), and they were removed from downstream analyses. Using an 88%
335	within-species clustering threshold and requiring at least six reads before calling a
336	cluster, an average of between 1617 and 4615 clusters were generated per species (Table
337	2). Our final data sets—requiring at least 75% of individuals—contained between 383
338	and 1037 loci, and between 617 and 2055 variable sites for analysis. SNP files and data
339	sets are available on Dryad (####).

340

341 *Population genetic structure*

342 STRUCTURE results vary by species, but consistently reflect the ecology of the 343 species in question (Fig. 3). The moth (E. semicrocea) is partitioned into two groups on 344 either side of the Mississippi River, with a similar pattern recovered in one of the flies 345 (S. sarraceniae). Population structure in the other fly species (F. celarata) is minimal, as 346 essentially no structure is seen at the K = 2 level. This result, however, appears to be an 347 artifact of the uneven sampling on either side of the Mississippi River, as only five flies 348 were sampled from west of the Mississippi River (Table S1; see Puechmaille 2016 for 349 discussion of how such uneven sampling can bias STRUCTURE results). When we 350 randomly subsampled individuals in the eastern locales to be similar in number to the sample sizes in the west, genetic partitions were geographically clustered, recovering the 351

352	east-west split (subsampling replicated 10 times, with STRUCTURE analyses run as
353	outlined above; Fig. S1). In contrast to the insects, neither spider species exhibited
354	appreciable genetic structure, with STRUCTURE plots discordant with geography.
355	Results from the AMOVA are consistent with those from STRUCTURE. In both
356	E. semicrocea and S. sarraceniae, there is significant genetic structure at all three levels
357	of the analysis, demonstrating strong population genetic structure in each species (Table
358	3). Population structure in the other fly (F. celarata) suggests significant association
359	among localities, although lack of permutations precludes us from testing for significance
360	at the other hierarchical levels (see Fitzpatrick 2009). In the spiders, genetic data are not
361	significantly structured at any of the hierarchical levels, consistent with results from
362	STRUCTURE and our inference of a loose association between the spider species and the
363	pitcher plant. Various summary statistics are consistent with these results. For the moth
364	and flies, genetic diversity is consistently higher in the east than in the west (Table 4).
365	This is in contrast to the spiders, where genetic diversity is higher in the west than the
366	east (<i>M. formosipes</i>) or is similar on either side of the river (<i>P. viridans</i>). All species
367	show negative Tajima's D values, although the standard deviations encompass small
368	positive values for all calculations.

369

370 *Estimating population divergence, population size, and gene flow*

371 <u>Model selection</u>

We specified seven models for analysis using the unlinked AFS, all variations ofthe traditional isolation-with-migration models (Fig. 2). Results were similar across

274				f
3/4	species in that isolation-onl	v models had low model.	propantitues	and for each species
571	species in that isolution on	y mouth mud low mouth	probabilities.	, und for each species,

- 375 multiple models received appreciable support (Table 5).
- 376

377 <u>Divergence times</u>

378 As most species had strong support for one of the IM models (Table 5), parameter 379 estimates were relatively consistent across data sets regardless of whether they were 380 generated via model-averaging (from unlinked AFS) or from the full IM model (using the 381 linked AFS). In general, unlinked AFS with model-averaged parameters contained 382 slightly younger divergence times than linked AFS with the IM model, not surprising 383 given the contribution of models that did not include gene flow. For the remainder of this 384 paper, we consider parameter estimates generated from the model-averaging approach 385 with unlinked data sets, but note that results from the other analyses are similar (i.e., Figs. 386 S2–S3; Table S2).

387 Divergence times were restricted to the Pleistocene in all species (Fig. 4), with the 388 precision varying across taxa. Assuming two generations per year, the moth 389 (*E. semicrocea*) is estimated to have diverged 230,745 years before present, with a 95%

390 CI of 213,555–247,935 (Table 6). Divergence time estimates for the flies were shallower

than the moth. Assuming two generations per year, divergence time in *S. sarraceniae*

392 averaged 195,045 years before present (95% CI 145,995–244,096), while those in

393 *F. celarata* averaged 90,598 years before present (95% CI 84,668–96,528; Table 6). For

the spiders, assuming one generation per year, divergence time estimates were older than

the rest of the community: *M. formosipes* ~475k years before present (95% CI 435,551–

396 511,349); *P. viridans* ~245k years before present (95% CI 235,180–253,086).

397	Collectively, divergence time estimates span from ~90k years before present to ~475k
398	years before present (Fig. 4).

399

400 <u>Population sizes</u>

401 As with the divergence time estimates, values are generally consistent within

402 species regardless of whether estimates where model-averaged (with unlinked AFS; Fig.

5) or from an IM model (with linked AFS; Fig. S3, Table S2). For the moth, population

sizes in the east are roughly five times as large as those in the west (520,215 vs. 102,907;

405 Table 6). This same pattern is evident in both flesh flies, where population sizes in the

406 east are roughly two to five times as large as those in the west (S. sarraceniae: 693,356–

407 124,174; *F. celarata*: 314,109–168,863; Table 6). In contrast, population sizes in the

408 spiders are similar on either side of the river (*M. formosipes*: 764,333 (E) – 556,845 (W);

409 *P. viridans*: 394,613 (E) – 333,666 (W); Table 6).

410

411 <u>Gene flow</u>

412 Migration rates (2Nm) are lowest among the ecologically dependent species 413 (Table 6). In the moth, migration is below 0.75 in either direction, suggesting little to no 414 migration within this species. Low levels of migration are seen with the flies, although 415 values of 1.57 for *S. sarraceniae* from west to east and 3.72 for *F. celarata* from east to 416 west suggest higher levels of migration (Table 6). Migration rates, however, are highest 417 within the spiders. In *M. formosipes*, $2Nm_{west to east} = 5.61$; in *P. viridans*, $2Nm_{east to west} =$ 418 4.08, and $2Nm_{west to east} = 5.54$ (Table 6).

419

420	Discussion
421	Diversification patterns of the Sarracenia alata ecological community
422	Zellmer et al. (2012) demonstrated that divergence across the Mississippi River in
423	S. alata occurred in the Pleistocene, roughly 120,000 years before present. Given findings
424	in other studies of host plants and associated arthropods that share a phylogeographic
425	history (e.g., Smith et al. 2011), we tested the prediction that obligate commensals of
426	S. alata should exhibit concordant population genetic structure, as well as divergence
427	time estimates similar to or more recent than the plant, reflecting the requirement of this
428	specialized habitat to facilitate colonization following dispersal to the west side of the
429	river for the arthropods.
430	We sampled arthropods from five divergent lineages, ranging in their association
431	with the host pitcher plant from obligate inquiline commensals (moth and two flies) to
432	opportunistic capture interrupters (two spiders). Both estimates of population genetic
433	structure and parameters demonstrate that the three commensal arthropods (pitcher plant
434	moth E. semicrocea, pitcher plant flies S. sarraceniae and F. celarata) exhibit an
435	evolutionary history largely congruent with the host pitcher plant. Perhaps the most
436	compelling result is that the pattern of genetic diversity and effective population sizes of
437	these three species and S. alata are largely concordant on either side of the river, with
438	high diversity in the east and low diversity in the west. These result support H_1 , and
439	suggests the long-term association of the ecologically dependent arthropod species with
440	the host pitcher plant. In addition, estimates of population divergence across the
441	Mississippi River indicate that at least two of these three arthropods (pitcher plant moth
442	E. semicrocea and pitcher plant fly S. sarraceniae) dispersed across the Mississippi River

443	largely in concert with S. alata, as their divergence time estimates are within 35k years of
444	one another (230 kya and 195 kya), with confidence intervals that overlap with each other
445	and those estimated from the pitcher plant. These results suggest the association between
446	these arthropods and S. alata has been stable for nearly 200,000 years.
447	The pattern identified in the other flesh fly (F. celarata) is intriguing. Population
448	divergence estimates from F. celarata are more recent (~90k years before present) than
449	those from S. alata and the other dipteran (S. sarraceniae), suggesting this species
450	dispersed across the Mississippi River after western populations of the plant and
451	S. sarraceniae were already well established. In our extensive fieldwork, we were only
452	able to collect five flies of <i>F. celarata</i> from the western locales (all from Cooter's Bog;
453	see Fig. 1); in contrast, we collected 73 S. sarraceniae individuals from the west. A series
454	of F. celarata specimens is known from Warren, Texas (see Dahlem & Naczi 2006), but
455	we were unable to locate any individuals of this species in any other western locale.
456	These five samples are monophyletic in their mitochondrial DNA (Satler & Carstens
457	2016), and population genetic parameters support their east-to-west dispersal and
458	structure (following subsampling and replication in STRUCTURE; Fig. S1). Three
459	factors could explain these results. For one, abiotic factors in the west may play a limiting
460	role in F. celarata's ability to disperse throughout the western landscape. Environmental
461	niche models (see Zellmer et al. 2012) suggest an inland/coastal division (for S. alata),
462	but given where F. celarata has been sampled, environmental differences between
463	eastern and western locales may be contributing to the lack of presence of these flies in
464	additional western bogs. Alternatively, the younger divergence time recovered in
465	F. celarata could be an artifact caused by limited sampling. Although we were able to

466 sample up to 10 alleles per locus for the western individuals, limited geographic sampling 467 combined with lower numbers of allele counts may have precluded us from generating 468 accurate estimates of divergence times. Finally, the limited sampling and population genetic parameter estimates could reflect differing outcomes of interspecies competition. 469 470 Pitcher plant flesh flies are ovolarviparous, with females depositing one larvae per 471 pitcher. Larvae are aggressive and territorial, actively attacking other flesh fly larvae 472 when present (Forsyth & Robertson 1975; Rango 1999; Dahlem & Naczi 2006). As the 473 two flesh fly species fill the same ecological niche, it may be the case that F. celarata is 474 less competitive in certain environments, resulting in higher numbers of S. sarraceniae in 475 the west. Given our estimated divergence times, S. sarraceniae would have had 476 substantially more time to become established (than *F. celarata*) at plant populations 477 west of the Mississippi River, leading to their higher abundance in our sampling efforts. 478 We note, however, that both species co-occur in the east, so the presence of one species 479 does not preclude the presence of the other. Although we do not have sufficient data to 480 conclusively determine the cause of the discordant pattern in sampling and divergence 481 dating, all other population genetic parameters support an east-to-west dispersal in 482 F. celarata, with population structure mirroring the pitcher plant highlighting the tight 483 relationship between the flesh fly and host plant.

Our findings are consistent with a growing biogeographic understanding of this system. Stephens *et al.* (2015) proposed a center of origin for *Sarracenia* in southeastern North America where the other *Sarracenia* species are distributed. In addition to being the only member of the genus found west of the Mississippi River, population genetic patterns in *S. alata* support this hypothesis, with colonization of the west from eastern

489	populations. Results from the insects are consistent with this scenario. This raises the
490	question: how did the S. alata community disperse across the Mississippi River?
491	Sarracenia seeds are tiny and lack modifications for long-range dispersal (Ellison 2001).
492	Ellison and Parker (2002) recovered most seeds of Sarracenia purpurea within five cm
493	of the parent plant, suggesting limited seed dispersal in these plants. We follow Zellmer
494	et al. (2012) in suggesting that a likely scenario is the course of the river changed to
495	effectively move some habitat from the east side to the west via the process of oxbow
496	lake formation (e.g., Gascon et al. 2000). The lower Mississippi River is a dynamic
497	system, with tremendous change in movement and flow during the Pleistocene (Mann &
498	Thomas 1968; Coleman 1988). Such a process would provide the opportunity for mature
499	plants and their commensal arthropods to move as a single unit across the river.

500

501 Intrinsic species traits and porous biogeographic barriers

502 Two spider species included here are markedly incongruent with the demographic 503 patterns evident in S. alata and its commensal arthropods. In each species the rates of 504 gene flow across the Mississippi River are high (Table 6), which leads to population sizes 505 on either side of the river that differ from patterns in the S. alata community. We suspect 506 that intrinsic species traits related to dispersal explain these differences, as both spiders 507 can travel long distances via ballooning. Divergence time estimates in the crab spider 508 (*M. formosipes*) are much older (~475k years before present) than the other species, 509 while those in the green lynx spider (*P. viridans*) are older, but similar with those of other 510 species analyzed here. As both spiders exploit the insect-attracting abilities of Sarracenia 511 (Folkerts 1999) and are commonly found in association to the pitcher plant but not

512	limited to this specialized habitat, it seems clear that ongoing gene flow within the region
513	have produced the discernable lack of population genetic structure in these species.
514	
515	Challenges with comparing divergence times across a biogeographic barrier
516	Investigating the timing of diversification across biogeographic barriers is of
517	central importance to the discipline, as a clustering of divergence times suggests a shared
518	response to a historical event (Bermingham & Moritz 1998). Accurately estimating
519	divergence times is particularly challenging when the focal species are sampled from
520	disparate taxonomic groups. Methods incorporating the coalescent model allow the
521	timing of population divergence to be directly estimated, potentially leading to more
522	precise inferences of community divergence (Hickerson et al. 2006), but rely on external
523	information that may be unknown in non-model species. While phylogeography has
524	assumed since Edwards and Beerli (2000) that more data would lead to more precise
525	estimates of population divergence and thus facilitate comparative studies that span
526	biogeographic barriers, comparative investigations require two types of information
527	(mutation rate and generation length) to convert estimates to values that can be compared
528	across species. Within the same taxonomic groups, these values are typically assumed to
529	be the same across taxa (e.g., Smith et al. 2014; Papadopoulou & Knowles 2015), but in
530	studies such as ours, a comparison of species that are only distantly related to one another
531	is complicated by a lack of information about these values. Here, we utilized a direct
532	estimate of the mutation rate from Drosophila flies (Haag-liutard et al. 2007) for lack of a
533	better option, but note that its relevance to the distantly related dipterans, lepidopterans,
534	and arachnids analyzed here is suspect because the three groups likely diverged before

535	the Cambrian (e.g., Rehm et al. 2011). Perhaps a larger concern is generation length. In
536	this study, we investigated small arthropods where there is little existing information
537	about life history traits. Previous works suggests that araneomorph spiders have one
538	generation per year (Foelix 1982), but we are less certain about the remaining arthropods.
539	The moth and the flies are reported to have multiple generations per year, but exact
540	values are unknown (Folkerts 1999). Moon et al. (2008) suggested E. semicrocea has two
541	generations per year, and this value is consistent with estimates from other moths in the
542	Noctuidae family (e.g., Spitzer et al. 1984). For the flies, we based our estimate of two
543	generations per year on research conducted in another pitcher plant flesh fly
544	(Fletcherimyia fletcheri) that is associated with Sarracenia purpurae.
545	Fletcherimyia fletcheri is estimated to have one generation per year at the higher latitudes
546	in northeastern United States and Canada (Rango 1999; Rasic & Keyghobadi 2012),
547	where pitcher leaves are active for \sim 4–8 weeks (Fish & Hall 1978). But in <i>S. alata</i> , where
548	leaves appear to be active for at least four months, we believe it is reasonable to use a
549	value of two generations per year. This is consistent with generation time estimates in
550	other flesh flies (in the genus Sarcophaga) suggesting 2-3 generations per year in the
551	temperate regions, with generation cycles taking up to 60 days (Denlinger 1978)
552	depending on day length and temperature (Chen et al. 1987; Lee et al. 1987).
553	Furthermore, seasonal and yearly fluctuations in climate and environment will influence
554	the number of generations in groups such as dipterans, which may mean that there were
555	fewer generations per year in the cooler Pleistocene Epoch. Regardless, these
556	assumptions clearly influence estimates of divergence time (Fig. 6).

557

558 *Conclusions*

559 Our results suggest that *S. alata* and at least two of its commensal arthropods 560 dispersed across the Mississippi River in a concerted manner, likely facilitated via oxbow 561 lake formation (Koopman & Carstens 2010), and suggest that these species represent an 562 evolutionary community sensu Smith et al. (2011). Given the similarities in population 563 genetic structure and effective population sizes across the members of this community, it 564 seems clear that the evolution of each species is influenced by the other members of the 565 community, as predicted by Darwin's tangled bank (Darwin 1859). While there are 566 clearly methodological difficulties pertaining to the analysis of genetic data, our work 567 demonstrates the importance of considering both the ecological relationships and the 568 intrinsic species traits when conducting comparative phylogeographic investigations. 569

570	
571	Funding
572	Funding was provided by the Society for the Study of Evolution (Rosemary Grant
573	Award for Graduate Student Research) and the Society of Systematic Biologists
574	(Graduate Student Research Award) to J.D.S., and the Louisiana EPSCoR Pfund, the
575	LSU Office of Research and Economic Development and Louisiana Board of Regents to
576	B.C.C.
577	
578	
579	Acknowledgements
580	We thank Rob Naczi and Greg Dahlem for assistance with identifying fly
581	specimens, Steve Bgdanowicz, Kelly Zamudio, and the Zamudio lab for assistance with
582	RAD sequencing, and Mike Sovic for discussion regarding <i>fastsimcoal2</i> analyses. We
583	also thank Mitchell Cruzan, Jon Eldon, and two anonymous reviewers for comments that
584	helped to improve this manuscript.
585	

586 587	<u>References</u> Adlassnig W. Peroutka M. Lendl T. (2011) Trans of carnivorous nitcher plants as a
588 589	habitat: composition of the fluid, biodiversity and mutualistic activities. <i>Annals of Botany</i> , 107 , 181–194.
590 591 592 593	 Akaike H (1974) A new look at the statistical model identification. <i>IEEE Transactions on Automatic Control AC</i>, 19, 716–723. Arbogast BS, Kenagy GJ (2001) Comparative phylogeography as an integrative approach to historical biogeography. <i>Journal of Biogeography</i>, 28, 819–825.
594 595 596 597 598 599 600	 Arnold B, Corbett-Detig RB, Hartl D, Bomblies K (2013) RADseq underestimates diversity and introduces genealogical biases due to nonrandom haplotype sampling. <i>Molecular Ecology</i>, 22, 3179–3190. Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Neigel JE, Reeb CA, Saunders NC (1987) Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. <i>Annual Review of Ecology and Systematics</i>, 18, 489–522.
601 602	Avise JC (2000) Phylogeography: the history and formation of species. Harvard Univ. Press, Cambridge, MA.
603 604 605 606	Bacon CD, Silvestro D, Jaramillo C, Smith BT, Chakrabarty P, Antonelli A (2015) Biological evidence supports an early and complex emergence of the Isthmus of Panama. <i>Proceedings of the National Academy of Sciences, USA</i> , 112 , 6110– 6115.
607	Bermingham E, Moritz C (1998) Comparative phylogeography: concepts and
608 609 610	Burbrink FT, Lawson R, Slowinski JB (2000) Mitochondrial DNA phylogeography of the polytypic North American rat snake (<i>Elaphe obsoleta</i>): a critique of the
611	subspecies concept. <i>Evolution</i> , 54 , 2107–2118.
612 613	Practical Information Theoretic Approach, 2nd edn. Springer-Verlag, New York.
614 615 616 617	Carstens BC, Brunsfeld SJ, Demboski JR, Good JM, Sullivan J (2005) Investigating the evolutionary history of the Pacific Northwest mesic forest ecosystem: hypothesis testing within a comparative phylogeographic framework. <i>Evolution</i> , 59 , 1639–1652.
618 619 620	Carstens BC, Satler JD (2013) The carnivorous plant described as <i>Sarracenia alata</i> contains two cryptic species. <i>Biological Journal of the Linnean Society</i> , 109 , 737–746.
621 622 623 624 625 626 627	 Carstens BC, Brennan RS, Chua V, Duffie CV, Harvey MG, Koch RA, McMahan CD, Nelson BJ, Newman CE, Satler JD, Seeholzer G, Posbic K, Tank DC, Sullivan J (2013) Model selection as a tool for phylogeographic inference: an example from the willow <i>Salix melanopsis</i>. <i>Molecular Ecology</i>, 22, 4014–4028. Chen C, Denlinger DL, Lee RE (1987) Responses of nondiapausing flesh flies (Diptera: Sarcophagidae) to low rearing temperatures: developmental rate, cold tolerance, and glycerol concentrations. <i>Annals of the Entomological Society of America</i> 80
628	790–796.

629 630 631	Coates AG, McNeill DF, Aubry MP, Berggren WA, Collins LS (2005) An introduction to the geology of the bocas del toro archipelago, Panama. <i>Caribbean Journal of</i> <i>Science</i> 41 374–391
632	Coleman JM (1988) Dynamic changes and processes in the Mississippi River
633 634 635	Cowman PF, Bellwood DR (2013) Vicariance across major marine biogeographic barriers: temporal concordance and the relative intensity of hard versus soft
636 637 638 639 640	Crews SC, Hedin M (2006) Studies of morphological and molecular phylogenetic divergence in spiders (Araneae: Homalonychus) from the American southwest, including divergence along the Baja California Peninsula. <i>Molecular Phylogenetics and Evolution</i> , 38 , 470–487.
641 642 643 644	 Criscuolo A, Brisse S (2013) AlienTrimmer: a tool to quickly and accurately trim off multiple short contaminant sequences from high-throughput sequencing reads. <i>Genomics</i>, 102, 500–506. Dahlem GA, Naczi RC (2006) Flesh flies (Diptera: Sarcophagidae) associated with North
645 646	American pitcher plants (Sarraceniaceae), with descriptions of three new species. Annals of the Entomological Society of America, 99 , 218–240.
647 648	Darwin C (1859) The origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, London, UK.
649	Darwin C (1875) Insectivorous plants. John Murray, London, UK.
650 651 652 653 654 655	 Denlinger DL (1978) The developmental response of flesh flies (Diptera: Sarcophagidae) to tropical seasons. <i>Oecologia</i>, 35, 105–107. Eaton DA (2014) PyRAD: assembly of de novo RADseq loci for phylogenetic analyses. <i>Bioinformatics</i>, 30, 1844–1849. Edwards SV, Beerli P (2000) Gene divergence, population divergence, and the variance in coalescence time in phylogeographic studies. <i>Evolution</i>, 54, 1839–1854.
656 657 658	Ellison AM (2001) Interspecific and intraspecific variation in seed size and germination requirements of <i>Sarracenia</i> (Sarraceniaceae). <i>American Journal of Botany</i> , 88 , 429–437.
659 660 661	 Ellison AM, Gotelli NJ (2001) Evolutionary ecology of carnivorous plants. <i>Trends in Ecology & Evolution</i>, 16, 623–629. Ellison AM, Parker JN (2002) Seed dispersal and seedling establishment of <i>Sarracenia</i>
662 663 664 665	 <i>purpurea</i> (Sarraceniaceae). American Journal of Botany, 89, 1024–1026. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics, 131, 479–491.
666 667 668 669 670 671	 Excoffier L, Dupanloup I, Huerta-Sánchez E, Sousa VC, Foll M (2013) Robust demographic inference from genomic and SNP data. <i>PLoS Genetics</i>, 9, e1003905. Fagundes NJ, Ray N, Beaumont M, Neuenschwander S, Salzano FM, Bonatto SL, Excoffier L (2007) Statistical evaluation of alternative models of human evolution. <i>Proceedings of the National Academy of Sciences, USA</i>, 104, 17614–17619.

672 673 674 675 676 677	 Fish D, Hall DW (1978) Succession and stratification of aquatic insects inhabiting the leaves of the insectivorous pitcher plant, Sarracenia purpurea. American Midland Naturalist. 1978 Jan 1:172-83. Fitzpatrick BM (2009) Power and sample size for nested analysis of molecular variance. <i>Molecular Ecology</i>, 18, 3961–3966. Foelix RF (1982) Biology of spiders. Harvard University Press.
678 679 680 681	Folkerts D (1999) Pitcher plant wetlands of the southeastern United States. Pp. 247–275 <i>in</i> Batzer DP, Rader RB, Wissinger SA, eds. Invertebrates in Freshwater Wetlands of North America: Ecology and Management. John Wiley and Sons, Inc., New York, NY.
682 683 684 685 686 687 688 689 690 691	 Forsyth AB, Robertson RJ (1975) K reproductive strategy and larval behavior of the pitcher plant sarcophagid fly, <i>Blaesoxipha fletcheri. Canadian Journal of Zoology</i>, 53, 174–179. Francis RM (2016) pophelper: an r package and web app to analyse and visualize population structure. <i>Molecular Ecology Resources. in press.</i> Funk WC, Caldwell JP, Peden CE, Padial JM, De la Riva I, Cannatella DC (2007) Tests of biogeographic hypotheses for diversification in the Amazonian forest frog, <i>Physalaemus petersi. Molecular Phylogenetics and Evolution</i>, 44, 825–837. Gascon C, Malcolm JR, Patton JL, da Silva MN, Bogart JP, Lougheed SC, Peres CA, Neckel S, Boag PT (2000) Riverine barriers and the geographic distribution of
692 693 694 695	 Amazonian species. <i>Proceedings of the National Academy of Sciences, USA</i>, 97, 13672–13677. Gordon A, Hannon GJ (2010) "Fastx-toolkit." FASTQ/A short-reads preprocessing tools (unpublished) http://hannonlab.cshl.edu/fastx_toolkit/
696 697 698 699 700 701	 Gutenkunst RN, Hernandez RD, Williamson SH, Bustamante CD (2009) Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data. <i>PLoS Genetics</i>, 5, e1000695. Haag-Liautard C, Dorris M, Maside X, Macaskill S, Halligan DL, Charlesworth B, Keightley PD (2007) Direct estimation of per nucleotide and genomic deleterious mutation rates in <i>Drosophila</i>. <i>Nature</i>, 445, 82–85.
702 703 704 705 706 707	 Hafner DJ, Riddle BR (2005) Mammalian phylogeography and evolutionary history of northern Mexico's deserts. <i>Biodiversity, ecosystems, and conservation in northern Mexico (JLE Cartron, G. Ceballos, and RS Felger, eds.). Oxford University Press, New York,</i> 225–245. Hickerson MJ, Stahl EA, Lessios HA (2006) Test for simultaneous divergence using approximate bayesian computation. <i>Evolution,</i> 60, 2435–2453.
708 709 710	Hickerson MJ, Stahl E, Takebayashi N (2007) msBayes: pipeline for testing comparative phylogeographic histories using hierarchical approximate Bayesian computation. <i>BMC Bioinformatics</i> , 8 , 268.
711 712 713 714	 Jackson ND, Austin CC (2010) The combined effects of rivers and refugia generate extreme cryptic fragmentation within the common ground skink (<i>Scincella lateralis</i>). <i>Evolution</i>, 64, 409–428. Jones FM (1921) Pitcher plants and their moths. <i>Natural History</i>, 21, 297–316.

715 716 717	Knowlton N, Weigt LA (1998) New dates and new rates for divergence across the Isthmus of Panama. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 265 , 2257–2263
718 719 720	 Koopman MM, Carstens BC (2010) Conservation genetic inferences in the carnivorous pitcher plant <i>Sarracenia alata</i> (Sarraceniaceae). <i>Conservation Genetics</i>, 11, 2027–2038.
721 722	Krawchuk MA, Taylor PD (2003) Changing importance of habitat structure across multiple spatial scales for three species of insects. <i>Oikos</i> 103 , 153–161
723	Leaché AD, Crews SC, Hickerson MJ (2007) Two waves of diversification in mammals
724	and reptiles of Baja California revealed by hierarchical Bayesian analysis. <i>Biology</i>
725	<i>Letters</i> , 3 , 646–650.
726	Lee RE, Chen C, Denlinger DL (1987) A rapid cold-hardening process in
727	insects. Science, 238, 1415–1417.
728	Leigh EG, O'Dea A, Vermeij GJ (2014). Historical biogeography of the Isthmus of
729	Panama. Biological Reviews, 89 , 148–172.
730	Lessios HA (2008) The great American schism: divergence of marine organisms after the
/31	rise of the Central American Isthmus. Annual Review of Ecology, Evolution, and
732	Lindell I. Ngo A. Murnhy RW (2006) Deep genealogies and the mid-peninsular seaway
734	of Baja California Journal of Riogeography 33 1327–1331
735	Lischer HEL Excoffier L (2012) PGDSpider: an automated data conversion tool for
736	connecting population genetics and genomics programs. <i>Bioinformatics</i> . 28, 298–
737	299.
738	Mann CJ, Thomas WA (1968) The ancient Mississippi River. Gulf Coast Association of
739	Geological Societies Transactions, 18, 187–204.
740	Moon DC, Rossi A, Stokes K, Moon J (2008) Effects of the pitcher plant mining moth
741	Exyra semicrocea on the hooded pitcher plant Sarracenia minor. American Middle
742	Naturalist, 159 , 321–326.
743 744	Nielsen R (2000) Estimation of population parameters and recombination rates from single nucleotide polymorphisms. <i>Genetics</i> , 154 , 931–942.
745	Papadopoulou A, Knowles LL (2015) Species - specific responses to island connectivity
746	cycles: refined models for testing phylogeographic concordance across a
747	Mediterranean Pleistocene aggregate island complex. Molecular Ecology, 24,
748	4252–4268.
749	Papadopoulou A, Knowles LL (2016) Toward a paradigm shift in comparative
750	phylogeography driven by trait-based hypotheses. Proceedings of the National
751	Academy of Sciences, USA, 113, 8018–8024.
752	Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE (2012). Double digest
753 754	RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. <i>PloS ONE</i> 7 , a27125
754	Pritchard IK Stephens M. Donnelly P (2000) Inference of population structure using
756	multilocus genotype data <i>Genetics</i> 155 945–959
757	Puechmaille SJ (2016) The program structure does not reliably recover the correct
758	population structure when sampling is uneven: subsampling and new estimators
759	alleviate the problem. Molecular Ecology Resources, 16, 608–627.

760 761 762	Pyron RA, Burbrink FT (2010) Hard and soft allopatry: physically and ecologically mediated modes of geographic speciation. <i>Journal of Biogeography</i> , 37 , 2005–2015.
763 764 765	R Core Team. 2015. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL <u>http://www.R-project.org/</u> .
766 767 768	Rango JJ (1999) Resource dependent larviposition behavior of a pitcher plant flesh fly, <i>Fletcherimyia fletcheri</i> (Aldrich)(Diptera: Sarcophagidae). <i>Journal of the New</i> <i>York Entomological Society</i> , 107 , 82–86.
769 770	Rasic G, Keyghobadi N (2012). The pitcher plant flesh fly exhibits a mixture of patchy and metapopulation attributes. <i>Journal of Heredity</i> 103 , 703–710
771 772 773	 Rehm P, Borner J, Meusemann K, von Reumont BM, Simon S, Hadrys H, Misof B, Burmester T (2011) Dating the arthropod tree based on large-scale transcriptome data. <i>Molecular Phylogenetics and Evolution</i>, 61, 880–887.
774 775 776	Riddle BR, Hafner DJ, Alexander LF, Jaeger JR (2000) Cryptic vicariance in the historical assembly of a Baja California peninsular desert biota. <i>Proceedings of the National Academy of Sciences, USA</i> , 97 , 14438–14443.
777 778 779	Satler JD, Zellmer AJ, Carstens BC (2016) Biogeographic barriers drive co- diversification within associated eukaryotes of the <i>Sarracenia alata</i> pitcher plant system. <i>PeerJ</i> , 4 , e1576.
780 781 782	Satler JD, Carstens BC (2016) Phylogeographic concordance factors quantify phylogeographic congruence among co-distributed species in the <i>Sarracenia alata</i> pitcher plant system. <i>Evolution</i> , 70 , 1105–1119.
783 784 785 786 787	 da Silva MNF, Patton JL (1998) Molecular phylogeography and the evolution and conservation of Amazonian mammals. <i>Molecular Ecology</i>, 7, 475–486. Smith CI, Tank S, Godsoe W, Levenick J, Strand E, Esque T, Pellmyr O (2011) Comparative phylogeography of a coevolved community: concerted population expansions in Joshua Trees and four yucca moths. <i>PLoS ONE</i>, 6, e25628.
788 789 790 791	Smith BT, Amei A, Klicka J (2012) Evaluating the role of contracting and expanding rainforest in initiating cycles of speciation across the Isthmus of Panama. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 279 , 3520– 3526
792 793 794	Smith BT, Harvey MG, Faircloth BC, Glenn TC, Brumfield RT (2014) Target capture and massively parallel sequencing of ultraconserved elements for comparative studies at shallow evolutionary time scales. <i>Systematic Biology</i> , 63 , 83–95.
795 796 797	Soltis DE, Morris AB, McLachlan JS, Manos PS, Soltis PS (2006) Comparative phylogeography of unglaciated eastern North America. <i>Molecular Ecology</i> , 15 , 4261–4293.
798 799 800 801 802	 Spitzer K, Rejmánek M, Soldán T (1984) The fecundity and long-term variability in abundance of noctuid moths (Lepidoptera, Noctuidae). <i>Oecologia</i>, 62, 91–93. Stephens JD, Santos SR, Folkerts DR (2011) Genetic differentiation, structure, and a transition zone among populations of the pitcher plant moth <i>Exyra semicrocea</i>: implications for conservation. <i>PLoS ONE</i>, 6, e22658.

803 804	Stephens JD, Folkerts DR (2012) Life history aspects of <i>Exyra semicrocea</i> (pitcher plant moth)(Lepidoptera: Noctuidae). <i>Southeastern Naturalist</i> , 11 , 111–126.
805	Stephens JD, Rogers WL, Heyduk K, Cruse-Sanders JM, Determann RO, Glenn TC,
806	Malmberg RL (2015) Resolving phylogenetic relationships of the recently
807	radiated carnivorous plant genus Sarracenia using target enrichment. Molecular
808	Phylogenetics and Evolution, 85, 76–87.
809	Sukumaran J, Holder MT (2010) DendroPy: a python library for phylogenetic computing.
810	<i>Bioinformatics</i> , 26 , 1569–1571.
811	Sullivan J, Arellano E, Rogers DS (2000) Comparative phylogeography of Mesoamerican
812	highland rodents: concerted versus independent response to past climatic
813	fluctuations. The American Naturalist, 155, 755–768.
814	Thomé MCT, Carstens BC (2016) Phylogeographic model selection leads to insight into
815	the evolutionary history of four-eyed frogs. Proceedings of the National Academy
816	of Sciences, USA, in press.
817	Upton DE, Murphy RW (1997) Phylogeny of the side-blotched lizards
818	(Phrynosomatidae: Uta) based on mtDNA sequences: support for a midpeninsular
819	seaway in Baja California. Molecular Phylogenetics and Evolution, 8, 104–113.
820	Wallace AR (1852) On the monkeys of the Amazon. Proceedings of the Zoological
821	Society of London, 20 , 107–110.

- Zellmer AJ, Hanes MM, Hird SM, Carstens BC (2012) Deep phylogeographic structure
 and environmental differentiation in the carnivorous plant *Sarracenia alata*.
- 824 *Systematic Biology*, **61**, 763–777.

825

826	D	Data Accessibility
827	SNP files, data sets, and scripts are a	vailable on Dryad (####).
828		

829	Figure legends
831 832 833 834 835 836 837 828	Figure 1. Distribution of <i>Sarracena alata</i> in the southeastern United States, with the Mississippi River represented on the map. Locales are as follows: Sundew (S), Pitcher (P), Bouton Lake (B), Red Dirt (R), Cooter's Bog (C), Kisatchie (K), Lake Ramsey (L), Abita Springs (A), Talisheek (T), De Soto (D), Franklin Creek (F), and Tibbie (Tb). Arthropods vary in the number of locales in which they are represented (see Table 1); details on the sampling distribution of each species can be found in Table S1.
839 840 841 842 843 844 845 844 845 846 847 848 849 850 851	Figure 2. Models used in FSC2 analyses, all variations of the isolation-with-migration model (panel C). Models varied in their included parameters, from divergence, to migration, to population size change. These models encompass several evolutionary scenarios for the species, and were selected to allow for model-selection tests prior to parameter estimation. This allows for model uncertainty to be taken into account, necessary for accurate parameter estimation in model-based inference. Models are as follows: A) Isolation only (ISO), B) Isolation with population size change in daughter populations (ISOc), C) IM model with symmetric migration (IM), D) IM model with symmetric migration and population size change in daughter populations (IMc), E) IM model with migration from west to east (IM_{WE}), F) IM model with migration from east to west (IM_{EW}), G) Island model (Island).
851 852 853 854 855 856	Figure 3. STRUCTURE results showing clustering of individuals at the $K = 2$ level for each species. Each column represents an individual. Two-letter codes below plots correspond to sampling locality.
857 858 859 860 861 862 863	Figure 4. Divergence time estimates from FSC2. Results show estimates of divergence times in years across the Mississippi River for each of the ten replicated data sets. Mean and 95% confidence intervals are presented from model-averaging with the unlinked AFS for each species. The host pitcher plant is estimated to have diverged at least 120,000 years before present (Zellmer <i>et al.</i> 2012).
864 865 866 867 868 869	Figure 5. Effective population size estimates from populations on either side of the Mississippi River from FSC2. Results are from the ten replicated data sets. Mean and 95% confidence intervals are presented from model-averaging with the unlinked AFS for each species.
870 871 872 873 874	Figure 6. Influence of generation length on divergence time estimates. Presented are estimated divergence time values (mean and 95% confidence intervals) for <i>S. sarraceniae</i> from model-averaging and unlinked AFS, scaled by number of generations per year. Between one and three generations per year would result in a divergence time similar to estimates in <i>S. alata</i> , suggesting co-diversification. This demonstrates that our inferences

- are dependent on the values assumed, and highlights the difficulties inherent to
- 876 conducting comparative phylogeographic investigations using parameter estimates,
- 877 especially when species are from taxonomically disparate groups.

Supplemental Figure legends

879 880 Figure S1. STRUCTURE results for *F. celarata* at the K = 2 level, after subsampling the 881 eastern locales to match in sample size with the west. We subsampled two individuals 882 from each of the three eastern locales, and repeated this process to get 10 subsampled 883 data sets. Results show a strong east–west genetic clustering across nearly all of the data 884 sets.

885

878

886

Figure S2. Divergence time estimates from FSC2. Results show estimates of divergence times in years across the Mississippi River for each of the ten replicated data sets. Mean and 95% confidence intervals are presented from an isolation-with-migration model with the linked AFS for each species. The host pitcher plant is estimated to have diverged at least 120,000 years before present (Zellmer *et al.* 2012).

- 892
- 893
- 894
- Figure S3. Effective population size estimates from populations on either side of the
- 896 Mississippi River from FSC2. Results are from the ten replicated data sets. Mean and
- 897 95% confidence intervals are presented from an isolation-with-migration model with the
- 898 linked AFS for each species.

899

Table 1. Sampled arthropod information. Five species were sampled from the community. Association with the plant, dispersal ability, and where they were sampled are presented here.

Species	Туре	Host Association	Dispersal Ability	Sampled Locales
E. semicrocea	Moth	Specialist	Weak	B,S,P,C,R – A,L,T,D,F,Tb
S. sarraceniae	Fly	Specialist	Weak	B,P,C,K – L,T,D,Tb
F. celarata	Fly	Specialist	Weak	C - T, D, Tb
M. formosipes	Spider	Generalist	Strong	B,P,C,R,K – A,D
P. viridans	Spider	Generalist	Strong	B,P,C,R,K – A,L,T,D,F,Tb

Species	Samples (N)	Reads ¹	Clusters ² at 88%	Loci	Variable Sites
E. semicrocea	26	74161645	4480 (1602 - 10275)	715	1724
S. sarraceniae	24	41434321	2291.5 (1336 - 6704)	383	962
F. celarata	23	28878943	1617 (736 – 3884)	440	617
M. formosipes	22	21859081	4615 (1049 - 13291)	579	1953
P. viridans	25	30424227	4195 (1243 - 6835)	1037	2055
¹ Reads that pass	ed quality filters	s. ² Clusters v	vith at least six reads; m	edian ar	nd range are
reported.					

Table 2. Genomic sequencing data. Samples were processed through Pyrad. Loci were present in at least 75% of samples for all species.

ι y filte.

Table 3. AMOVA results. Samples were partitioned by locality and within either side of the Mississippi River. Significance was assessed with 10,000 bootstrap replicates. * represents a *p*-value between 0.05 and 0.01; ** represents a *p*-value below 0.01. For *F. celarata*, significance was not assessed at levels other than φ_{ST} due to small number of permutations (see Fitzpatrick 2009).

	Among		Among locales		Within	
Species	locales	ϕ_{ST}	within regions	φ _{sc}	regions	Фст
E. semicrocea	34.38	0.46**	11.99	0.18**	53.63	0.34**
S. sarraceniae	16.53	0.27**	10.78	0.13**	72.70	0.17*
F. celarata	14.64	0.19**	3.92	0.05	81.44	0.15
M. formosipes	-2.78	0.15	17.94	0.17	84.84	-0.03
P. viridans	0.73	0.14	13.70	0.14	85.58	0.01

Table 4. Summary statistics, with samples partitioned west (W) and east (E) of the Mississippi River. Mean values and standard deviation for segregating sites (SS), nucleotide diversity (π), Watterson's theta (Θ_w), and Tajima's *D*.

Species	S	SS	2	π	e	\mathbf{O}_w	Tajin	ıa's D
	W	Ε	W	Ε	W	Ε	W	Е
E. semicrocea	1.17 (1.77)	2.36 (2.47)	0.0033 (0.0058)	0.0075 (0.0094)	0.3210 (0.4952)	0.6431 (0.6876)	-0.26 (0.72)	-0.26 (0.81)
S. sarraceniae	1.62 (2.22)	2.23 (2.36)	0.0049 (0.0076)	0.0064 (0.0079)	0.4529 (0.6253)	0.6184 (0.6601)	-0.28 (0.77)	-0.44 (0.77)
F. celarata	0.51 (1.01)	1.80 (1.94)	0.0025 (0.0052)	0.0045 (0.0054)	0.1856 (0.3734)	0.4490 (0.4896)	-0.03 (0.51)	-0.38 (0.62)
M. formosipes	3.55 (3.02)	2.12 (2.34)	0.0107 (0.0099)	0.0083 (0.0099)	0.9597 (0.8163)	0.7065 (0.7828)	-0.40 (0.71)	-0.31 (0.77)
P. viridans	1.76 (1.95)	1.96 (2.07)	0.0052 (0.0065)	0.0056 (0.0068)	0.4945 (0.5487)	0.5469 (0.5755)	-0.36 (0.71)	-0.42 (0.78)

Table 5. Results from model selection tests. Values represent model probabilities generated using AIC and information theory. Only models that include migration generate any substantial support. See Fig. 2 for model details.

			Species		
Model	E. semicrocea	S. sarraceniae	F. celarata	M. formosipes	P. viridans
1 – ISO	0.00	0.00	0.00	0.00	0.00
2 – ISOc	0.00	0.00	0.00	0.00	0.00
3 – IM	0.83	0.41	0.30	0.39	0.70
4 – IMc	0.00	0.00	0.00	0.00	0.00
$5-IM_{\rm WE}$	0.15	0.57	0.03	0.58	0.20
$6 - IM_{\rm EW}$	0.01	0.00	0.60	0.03	0.10
7 – Island	0.01	0.02	0.07	0.00	0.00

Table 6. Population genetic parameters estimates from FSC2 from model-averaging and unlinked AFS data sets. Divergence times (τ) are in years, scaled by number of generations per year, and migration rates are in 2Nm. Values were averaged across the ten replicated data sets within each species.

95% CI 213,555 – 247,935 145,995 – 244,096 84,668 – 96,528 435,551 – 511,349 235,180 – 253,086	Mean 102,907 124,174 168,863 556,845 333,666	95% CI 86,586 - 119,228 89,668 - 158,680 114,681 - 223,046 441,555 - 672,135 235,139 - 432,194	Mean 520,215 693,356 314,109 764,333	95% CI 482,101 – 558,329 567,537 – 819,174 259,511 – 368,708 539,372 – 989,295	Mean 0.18 1.57 0.19	95% CI 0.12 - 0.24 1.08 - 2.06 0.00 - 0.38	Mean 0.66 0.75 3.72	95% CI 0.35 - 0.97 0.00 - 1.49 2.94 - 4.51
213,555 - 247,935 145,995 - 244,096 84,668 - 96,528 435,551 - 511,349 235,180 - 253,086	102,907 124,174 168,863 556,845 333,666	86,586 - 119,228 89,668 - 158,680 114,681 - 223,046 441,555 - 672,135 235,139 - 432,194	520,215 693,356 314,109 764,333	482,101 – 558,329 567,537 – 819,174 259,511 – 368,708 539,372 – 989,295	0.18 1.57 0.19	0.12 - 0.24 1.08 - 2.06 0.00 - 0.38	0.66 0.75 3.72	0.35 - 0.97 0.00 - 1.49 2.94 - 4.51
145,995 – 244,096 84,668 – 96,528 435,551 – 511,349 235,180 – 253,086	124,174 168,863 556,845 333,666	89,668 - 158,680 114,681 - 223,046 441,555 - 672,135 235,139 - 432,194	693,356 314,109 764,333	567,537 - 819,174 259,511 - 368,708 539,372 - 989,295	1.57 0.19	1.08 - 2.06 0.00 - 0.38	0.75 3.72	0.00 - 1.49 2.94 - 4.51
84,668 – 96,528 435,551 – 511,349 235,180 – 253,086	168,863 556,845 333,666	114,681 – 223,046 441,555 – 672,135 235,139 – 432,194	314,109 764,333	259,511 – 368,708 539,372 – 989,295	0.19	0.00 - 0.38	3.72	2.94 - 4.51
435,551 – 511,349 235,180 – 253,086	556,845 333,666	441,555 – 672,135 235,139 – 432,194	764,333	539,372 - 989,295	5 (1			
235,180 - 253,086	333,666	235,139 - 432,194			5.61	4.36 - 6.86	0.86	0.41 - 1.31
			394,613	299,784 – 489,442	5.54	3.52 - 7.56	4.08	2.65 - 5.50

