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Phylogeographic research investigates biodiversity at the interface
between populations and species, in a temporal and geographic
context. Phylogeography has benefited from analytical approaches
that allow empiricists to estimate parameters of interest from the
genetic data (e.g., θ = 4Neμ, population divergence, gene flow), and
the widespread availability of genomic data allow such parameters
to be estimated with greater precision. However, the actual infer-
ences made by phylogeographers remain dependent on qualitative
interpretations derived from these parameters’ values and as such
may be subject to overinterpretation and confirmation bias. Here we
argue in favor of using an objective approach to phylogeographic
inference that proceeds by calculating the probability of multiple de-
mographic models given the data and the subsequent ranking of
these models using information theory. We illustrate this approach
by investigating the diversification of two sister species of four-eyed
frogs of northeastern Brazil using single nucleotide polymorphisms
obtained via restriction-associated digest sequencing. We estimate
the composite likelihood of the observed data given nine demo-
graphic models and then rank thesemodels using Akaike information
criterion. We demonstrate that estimating parameters under a model
that is a poor fit to the data is likely to produce values that lead to
spurious phylogeographic inferences. Our results strongly imply that
identifying which parameters to estimate from a given system is a
key step in the process of phylogeographic inference and is at least as
important as being able to generate precise estimates of these pa-
rameters. They also illustrate that the incorporation of model uncer-
tainty should be a component of phylogeographic hypothesis tests.

information theory | model selection | Pleurodema |
site frequency spectrum | Caatinga

In biologicalQ:8 populations with interbreeding individuals, allele fre-
quencies will inevitably change with time, both in stochastic and

systematic manners, through neutral and adaptive processes. These
processes—genetic drift, gene flow, mutation, recombination, and
natural selection — constitute observable phenomena that lead di-
rectly to population structure, population divergence, and eventually
speciation. Phylogeography is ideally situated to investigate systems
where the microevolutionary processes that act within gene pools
begin to form macroevolutionary patterns and has been described as
the bridge between population genetics and phylogenetics (1). The
power of the discipline comes from the consideration of geographic
origin of individuals and populations along the continuum between
populations and species (2, 3).
Phylogeographic research has progressed through several stages

since Avise et al. (1) introduced the term. Initial studies were based
on information that can be gathered from the genetic data under few
assumptions, for example by calculating summary statistics or esti-
mating gene trees. Inferences were then derived from qualitative
interpretations about what that information implied about the evo-
lutionary history of the system (e.g., refs. 4 and 5). This approach has
been criticized as being prone to overinterpretation, because re-
searchers are inclined to propose more detailed and complex his-
torical scenarios than are actually supported by the data (6). The
general response to such criticisms has been the widespread adop-
tion of model-based methods to analyze phylogeographic data,

particularly models that incorporate coalescent theory (7) to esti-
mate parameters of interest under a formal framework. Model-
based methods of phylogeographic inference clearly represent an
advance to the field, but making inferences from these parameter
estimates still forces researchers to make subjective decisions. De-
spite the potential complexity of the demographic models, the actual
process of phylogeographic inference remains largely analogous to
that of earlier investigations: The relative influence of evolutionary
processes is derived from the magnitude of numeric values estimated
for parameters that measure what the researchers believe to be
important evolutionary processes. For example, subjective decisions
regarding estimated rates of gene flow are commonly used to de-
termine whether populations are reproductively isolated from their
sister taxa (e.g., ref. 8) or conspecifics (e.g., ref. 9).
Once efficient algorithms and computational power became

available, researchers applied model-based methods to phylogeo-
graphic research with little hesitation (but see ref. 10), with models
implemented in software packages being particularly popular. For
example, the paper describing a popular method that estimates
temporal divergence with gene flow has been cited in more than
500 studies to date (11). Simulation-based techniques are also
commonly applied to empirical systems, either to test competing
hypotheses such as introgression and lineage sorting (e.g., refs. 12–
14) or to test phylogeographic hypotheses against a null model
(e.g., refs. 15–17). Such methods have been widely adopted by
the phylogeographic community because model-based methods
offer a path toward estimating putatively relevant parameters,
and because the models themselves can be tailored to the par-
ticulars of a given system (e.g., refs. 18 and 19). Phylogeographic
inferences are more transparent when based on parameters esti-
mated under these models, and arguably less subjective. However,
simply using a complex demographic model to analyze genetic data
is not a guarantee that phylogeographic inferences will be correct.
In the cognitive sciences, researchers have long been mindful of

confirmation bias, the tendency to interpret novel information in a
manner consistent with preconceived ideas (20). People tend to seek
out information that supports their preexisting beliefs and are un-
likely to consider contradictory information. Particularly problem-
atic is the primacy effect, in which the information that is learned
first effectively has more emphasis than information that is obtained
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at a later date (20). Confirmation bias is likely prevalent in phylo-
geographic research (21), influencing phylogeographic inference by
shaping the very questions that are asked by researchers. For ex-
ample, if initial investigations into a given system used gene trees
and phylogenetic thinking, researchers may not consider population
processes such as gene flow as being potentially important, and
choose to estimate divergence times under a species tree model,
which may not actually fit the data (e.g., ref. 22). Researchers
working in temperate systems in the Northern Hemisphere may
assume that postglacial expansion is an important process and
choose to estimate effective population size under growth models
(e.g., ref. 23), whereas those working on focal taxa that inhabit
island systems are likely to consider dispersal to be a key process
shaping allele frequencies, and estimate effective population sizes
under migration models (e.g., ref. 24). Such assumptions will guide
choices about which models and software should be used to analyze
the data and might also bias their interpretation of the values of
parameters estimated under these models. Objective assessment of
model fit should be an important component of phylogeographic
research, particularly in systems where there is little preexisting in-
formation about the demographic history.

What If the Phylogeographic Model Is Wrong?
There is a great asymmetry in terms of the amount of available
background information between model and nonmodel systems. In
the extreme case of Homo sapiens, the analytical models used for
data analysis are informed by the academic output of entire disci-
plines (e.g., anthropology) as well as thousands of previous genetic
investigations. In contrast, the average phylogeographer likely knows
very little about the focal organism before an investigation, save what
can be inferred from its taxonomic placement and general habitat.
This asymmetry is exacerbated for researchers interested in tropical
diversity, which account for the vast majority of organisms:
Chances are that even the most basic natural history traits
(area of occurrence, density, feeding habitats, maturation age,

and reproductive mode) are unknown to science. Given this
paucity of information, how should researchers determine
which models to use in data analysis?
In their review of statistical methods in phylogeography, Nielsen

and Beaumont (25) argue strongly that population parameters
should be estimated under appropriate models to avoid bias in the
parameter estimates: “A clear limitation of any model-based method
is that the model might be wrong. In fact, the real complexity of the
demography of natural populations is unlikely to be captured by any
simple model we could propose. In some cases, this may not affect
inferences much, but in other cases it will.” If phylogeographic
inferences are largely derived from parameter estimates made
under complex models, then such inferences are implicitly
conditioned on the statistical fit of the model used to estimate
these parameters to the empirical data collected from the focal
system. To date, there has been too little attention devoted to
methods for assessing the statistical fit of phylogeographic
models to the data.

Statistical Frameworks for Phylogeography
Phylogeographic research is a historical discipline rather than an
experimental one, and evolutionary history cannot be replicated.
Because the experimental controls used in classical hypothesis
testing are not available (e.g., ref. 26), testing hypotheses, even with
parametric simulation Q:9(e.g., refs. 15 and 27), forces the phylogeo-
graphy to conform to a statistical framework that may not be suited
to historical research (28). A more promising strategy for phylo-
geographic data analysis is to proceed by identifying which of many
possible models of historical demography offer the best statistical fit
to the observed data, rather than testing null hypotheses, where
rejection only tells us that the model representing the hypothesis is a
poor fit to the data. If the goal of phylogeography is to infer the
evolutionary history of the focal taxon, then ranking a set of models
that represent alternative evolutionary scenarios provides a rigorous
tool for inference because it will help researchers to avoid confir-
mation bias. Because the parameters in each model correspond to

Fig. 1. Map of the sampling localities. The outline of the Caatinga is shown on
an elevation map of northeastern Brazil, where darker shading corresponds to
higher elevation. P. diplolister localities are marked with a dark square, P. alium
localities with a pink triangle.

Fig. 2. Nine Q:13demographic models used in model selection are shown. Pa-
rameters abbreviations include genetic diversity of P. alium and P. diplolister
(θa, θd), ancestral genetic diversity (θΑ), the timing of population divergence
(Tdiv), migration between diverging lineages (mad, mda), the rate of population
expansion (exp), the timing of migration (Tmig), and bottlenecks (Tbot).
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various evolutionary processes, the relative influence of particular
evolutionary processes to the empirical system can be assessed
by considering the set of parameters included in the model that
offers the best fit to the data. Model selection is a useful
framework for phylogeographic inference because it offers an
approach that accounts for the uncertainty in the models used
to analyze the data.

Model Selection in Bayesian and Information Theoretic
Frameworks
Fagundes et al. (29) provided a compelling example of phylogeo-
graphic research using model selection in a Bayesian framework,
using approximate Bayesian computation (ABC) to evaluate alter-
native models of human demographic history. Inspired by this work,
many researchers have applied a similar approach to a wide range of
nonmodel systems (e.g., refs. 30–34). However, as with any approach
to data analysis, phylogeographic model choice using ABC has
limitations, and decisions about which models to include in the
comparison set can be challenging. Because ABC loses power to
differentiate among models as the number of models in the com-
parison set increases (35), one cannot easily evaluate large numbers
of models. Fagundes et al. (29) had the advantage of working in a
model system where they could identify three types of models to test
based on the results of hundreds of previous investigations, but the
lack of similar information in nonmodel systems increases the odds
of erroneous model choice and faulty phylogeographic inference.
A solution to evaluating a large number of models representing a

great many possible demographic histories is to use information
theory (36) to rank models. Information theory relies on the esti-
mation of the Kullback–Leibler (37) information of a given model
using the Akaike information criterion (AIC) (38), and the sub-
sequent ranking of all models in the comparison set. The model
ranking is achieved by calculating the difference between the AIC
score of a particular model and the best model in the set (e.g., Δi =
AICi –minAIC), and subsequent transformation to model likelihoods
(wi) by normalizing AIC differences across the set of R models such
that they sum to 1.0 [wi = exp (−1/2Δi)/

PR
r= 1 exp (−1/2Δr); see ref.

36]. A reasonable interpretation of these model probabilities is that
they correspond to posterior probabilities under a uniform prior
distribution (36). Information theory is commonly used to select
models of DNA nucleotide substitution for analyses of sequence
data (as in the software ModelTest; ref. 39), and has been effectively
used to compare among large number of models in this context. To
date, information theoretic approaches have been used in phylo-
geography to choose the best of several isolation-with-migration
models (e.g., refs. 40 and 41), to evaluate models of postglacial ex-
pansion and colonization (21), and to evaluate models of source-sink

migration (42, 43). In this paper, we briefly illustrate its application
using data from the four-eyed frogs of northeastern Brazil.

Case Study: The Pleurodema System in the Brazilian
Caatinga
Pleurodema alium and Pleurodema diplolister are sister species of
four-eyed frogs that inhabit the Caatinga in northeastern Brazil
(44). The Caatinga is a widespread xeric biome, surrounded
by the extensive mesic environments of the Amazon, Cerrado,
and Atlantic Rainforest. Its climate is highly seasonal and un-
predictable, with severe droughts and rainless years. As is typical
of amphibians from xeric habitats, Pleurodema persist through-
out most of the year by burrowing underground, becoming active
only after seasonal heavy rains create ephemeral pools for
breeding. Even though the life cycle in Pleurodema depends on
precipitation, these frogs cannot maintain populations in more
mesic biomes and its distribution is restricted to the Caatinga
xeric habitat.
Floristically, the Caatinga is one of the isolated nuclei in the

Seasonally Dry Tropical Forests (SDTFs) of South America.
The history of the SDTFs is debated, with some evidence sug-
gesting that they were formerly continuous and recently frag-
mented [during the Last Glacial Maximum (LGM); ref. 45], and
other evidence favoring an older (Tertiary) fragmentation (46).
Environmental niche modeling results in contrasting maps
ranging from a largely continuous to a fragmented Caatinga,
depending on the approach used (47, 48). Regardless of the
broader continental trends of the SDTFs, there is abundant
geologic evidence that the Caatinga has been recurrently invaded
(and at least partially replaced) by mesic forest throughout its
history (49, 50).
P. alium and P. diplolister were recently the subject of phylo-

geographic investigation. Thomé et Q:10al. (51) collected >350 samples,
sequenced the mitochondrial cytochrome oxidase I (COI) gene, and
genotyped 12 microsatellite loci. Using these data, they were able to
confirm that the species were distinct at the genetic level (both at
COI and microsatellite markers), and that they have partly sym-
patric distributions: P. alium is restricted to the southern Caatinga,
whereas P. diplolister is widespread in the biome, occurring also
in pockets of Caatinga embedded within the Cerrado (Fig. 1).
The population genetic structure within the broadly distrib-
uted P. diplolister reflected the distribution of its sister spe-
cies, in that the P. diplolister samples that were sympatric with
P. alium formed a separate genetic cluster.
Given the available information, a wide range of evolutionary

processes (and therefore parameters) could be incorporated into a
demographic model of P. alium and P. diplolister. Temporal di-
vergence likely represents an important component, supported by

Table 1. Comparison of parameter estimated using FSC2 under four models
Q:16

Model (wi) Nancestral Nalium Ndiplolister Tdiv 2Nm12 2Nm21

3 (0.21) 1.48 × 104 6.86 × 104 134 × 106 5.86 × 104 0.069 0.904
4 (0.56) 1.43 × 104 6.98 × 104 1.33 × 106 5.88 × 104 0.072 n/a
7 (0.23) 5.59 × 103 6.92 × 104 1.36 × 106 5.93 × 104 0.078 0.738

TMIG

2.97 × 104

6 (0.00) 2.65 × 102 8.20 × 104 2.3 × 106 3.28 × 106 n/a n/a
Nfound Texp Gexp

73 1.09 × 104 −4.6 × 10−5

Model average 1.25 × 104 6.94 × 104 1.34 × 106 5.89 × 104 0.073 0.783
Lower confidence interval 1.12 × 104 6.61 × 104 1.31 × 106 5.75 × 104 0.063 0.643
Upper confidence interval 1.37 × 104 7.26 × 104 1.37 × 106 6.02 × 104 0.083 0.887

Shown are estimates of population sizes (Nancestral, Nalium, Ndiplolister, and Nfound), estimates of population divergence (Tdiv), the time that
gene flow begins (TMIG), the time that expansion begins (Texp), gene flow (2Nm), and the magnitude of population size change (Gexp). The
model probability of each model is shown in parentheses after the model number. All parameters were converted to real units assuming a
mutation rate of 2.1 × 10−9. See Table S1 for additional information regarding the results from all modelsQ:14 . n/a, not assessed.
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the deep divergence in the COI data (51). Effective population
sizes are likely to differ between species, because P. diplolister has
a much larger geographic range than P. alium, and probably a
corresponding difference in census population size. Although
range size and effective population size are not necessarily cor-
related, the difference in geographic range provides justification
for allowing for the possibility of differences in effective pop-
ulation size among species, so long as we assume that the mutation
rate does not vary between species. In addition to the processes of
temporal divergence and different population sizes, other evolu-
tionary processes could be important: population size change
within species (such as population bottlenecks or exponential
population growth), gene flow, and/or natural selection.
We specified nine demographic models for analysis, which were

designed to represent a range of demographic histories. All models
included lineage divergence between the sister taxa P. alium and
P. diploister and some combination of the following demographic
processes: population expansion or contraction, population bot-
tlenecks, gene flow, and population-specific θ values (Fig. 2). There
are hundreds of ways that the divergence of two species from a
common ancestor could be parameterized (see ref. 35); here, we
hope to specify models that span the range of possible models but

include those that we believe to be plausible (e.g., we do not in-
clude n-island models that lack temporal divergence, because we
consider divergence time to be an essential parameter to include in
any model that contains sister species).

Sampling and Molecular Protocols. We sampled 183 individuals of
Pleurodema from 55 locations in the core, isolates, or peripheral
regions of the Caatinga, comprising most of its distribution in the
Caatinga biome (see ref. 51). SNPs were collected via genome-wide
sampling using restriction enzymes (double-digest RADseq; ref.
52). DNA digestion and barcode ligation were performed in-
dividually for each sample using 300 ng of freshly extracted DNA,
the restriction enzymes Sbf1-HF and MspI, the ligation enzyme
Ligase T4, and eight different barcoded Illumina adaptors. The
digestion–ligation reactions were then pooled in groups of eight
and purified with Agencourt AMPure beads, and PCR (12 cycles)
was used to amplify the fragments containing barcodes using six
different Illumina indexed primers and Phusion DNA polymerase.
PCR products were quantified with Qubit Fluorometric Quanti-
tation (Invitrogen), equimolar quantities of six groups containing
eight samples each were pooled, and 250- to 500-bp fragments
were selected using a Blue Pippin Prep. The fragment sizes were

Fig. 3. Projections of suitable habitat for P. alium and P. diplolister. Shown clockwise from upper left are estimates of the current ecological niche, as well as
projections of this niche onto past conditions of the mid Holocene, the LGM, and the LIG.
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confirmed with an Agilent 2100 Bioanalyzer (Agilent), and 100-bp,
single-end, sequencing reactions were conducted using an Illumina
HiSEq 2000 at Beckman Coulter Genomics.

Data Processing. Illumina outputs from Pleurodema samples were
processed using the pyRAD pipeline (53). Except for the initial
demultiplexing step, which was conducted separately on each li-
brary, we processed data for all samples together with the following
parameter specifications: 10× minimal coverage, four or fewer un-
known bases per sequence, minimum similarity of 0.90, a maximum
ratio of shared polymorphisms of 20%, and a minimum coverage
taxon of 70%. The number of reads that passed quality control was
plotted against the number of loci obtained in each sample to es-
tablish a minimum number of reads for a sample to be considered.
Because the number of loci stabilizes above 300,000 reads, we
eliminated the 18 samples that were bellow this threshold before
conducting a final SNP calling step in the remaining 165 samples.
This scheme yielded 6,027 alignments containing SNPs.

Missing Data. After excluding SNPs that were possibly under se-
lection (Supporting Information), our dataset consisted of 5,810
sequenced regions containing one or more SNPs. However, every
region was not sequenced in each sample. Population-level data
collected using RADseq and related protocols typically consist of
data matrices with some degree of missing data (e.g., refs. 54 and
55), and these missing data can lead to biased estimates of effective
population size and other parameters (56, 57). Missing data are
likely to be particularly problematic for analytical methods that rely
on estimates of allele frequencies because rare alleles may be
undercounted. However, it is not clear how to best conduct anal-
yses in a manner that accounts for the missing data. Missing data
might be related to mutations in the recognition site of the en-
zymes, and removing all individuals that contain missing data about
a certain threshold would be equal to removing the most divergent
individuals, which could artificially homogenize the dataset and
dramatically change the estimates of the number of rare alleles.
Alternatively, removing all loci that contain missing data will dra-
matically reduce the size of any observed RADseq dataset and
negate some of the advantages of collecting such data in the first
place. Because we will analyze our data using a method that relies
on estimates of the population site frequency spectra (discussed
below), it is important to account for missing data in a manner that
does not bias our estimate of these frequencies. ToQ:11 accomplish this,
we choose SNPs (one per locus) and individuals at random from
our full data and then replicated this downsampling 10 times using
a Python script provided by Jordan D. Satler, The Ohio State
University, Columbus, OH (Supporting Information). After the
downsampling procedure, our replicate data matrixes consisted of
approximately one-third of the total SNPs in one-half of the indi-
viduals and enabled us to calculate confidence intervals by com-
paring estimated parameters across replicates.

Model Selection. We estimated the composite likelihood of the
probability of the observed data given the specified model using
fastsimcoal2 (FSC2) (58). FSC2 estimates parameters specified by
the user (including θ = 4Neμ, population size change, gene flow, and
population divergence) from the site frequency spectrum (SFS).
Demographic processes will influence the site frequency distribu-
tions; for example, gene flow will produce an abundance of shared
SNPs, population bottlenecks will result in a reduction of genetic
diversity and thus fewer low-frequency SNPs, and so on. After the
demographic model is specified, FSC2 selects initial parameter val-
ues at random from a range specified by the user and simulates data
using the demographic model and parameter values. Composite
likelihoods are calculated following Nielsen (59), who demonstrated
that there is a relationship between the branch lengths of the ge-
nealogy and the probability of observing an SNP of a certain fre-
quency distribution. Parameter optimization was conducted using

the Brent algorithm implemented in FSC2, which identifies param-
eter values that maximize the likelihood estimate of the observed
SFS given the demographic model. Finally, the maximized likelihood
observed across all iterations is used in model comparison.
Using FSC2, the analysis of each of the 10 downsampled datasets

was replicated 50 times (58). The individual run settings of each
replicate included 100,000 simulations for the calculation of the
composite likelihood and 50 cycles of the Brent algorithm (for pa-
rameter optimization). FSC2 analyses were conducted using mas-
sively parallel computing resources provided by the Ohio
Supercomputer Center. After the maximum likelihood was es-
timated for each model in every replicate, we calculated the AIC
scores and converted to model probabilities as above. This
transformation allows us to measure the probability of each
model given the observed data across replicates (e.g., Table S1),
which we interpret as a measure of the degree of support for a
particular model following ref. 60.

Results and Discussion
The results of the FSC2 analysis were consistent in the sense that
only three models, all isolation with migration, have any appreciable
model probability (i.e., >0.001; Table S1). The model with ongoing
gene flow from P. diplolister to P. alium has the highest model
probability. The secondary contact model and the model asymmetric
gene flow between P. diplolister and P. alium have similar log-like-
lihoods given the data to the best model but lower AIC scores due to
having additional parameters. Additionally, parameter estimates
suggest that these models may be more similar than they seem
(Table 1). For example, in the secondary contact model (i.e., model
7) parameter estimates of the time that gene flow begins are closer
to the divergence of these species from their common ancestor than
to the present, and in model 3 (i.e., the model with asymmetric gene
flow) the rate of gene flow from P. alium to P. diplolister is estimated
to be much lower than the rate of migration in the opposite di-
rection (although these estimates are not perfectly comparable be-
cause the duration of gene flow is not the same under these models).
Due to the similarity in parameters estimated by these models, our
phylogeographic inferences are based on model-averaged parameter
values (i.e., the value of a given parameter estimated under a par-
ticular model weighted by the model probability of that model, av-
eraged across models that share the particular parameter; Table 1).
There are several striking features of the divergence with gene flow

models. Assuming a mutation rate of 2.1 × 10−9 substitutions per site
per generation (61) to convert parameter estimates, the ancestral
effective population size (averaged across replicates and models) was
estimated to be small (∼12,500 individuals). P. alium and P. diplolister
began to diverge from their common ancestor during the last glacial
cycle of the Pleistocene (∼58,900 y B.P.) but continued to exchange
alleles via migration. The rate of migration into each species from the
other was not equal; roughly 10 times as many P. diplolister migrants
entered the P. alium gene pool than the reverse (2Nmda = 0.78;
2Nmad = 0.07). Finally, whereas the current effective population size
of each species is estimated to be larger than the ancestral pop-
ulation, current effective population sizes in P. diplolister are sub-
stantially larger than in P. alium (Nd = 1.34 × 106; Na = 6.9 × 104),
consistent with differences in their geographic ranges.
Perhaps the most surprising result from our analysis is how much

parameter estimates depend on the model used to estimate the
parameters. For example, divergence time is estimated to be two
orders of magnitude more ancient when estimated under model 6
(∼3,280,000 y B.P.) than under the best-ranked model (Table 1),
whereas the ancestral effective population size was estimated to be
much smaller (2.65 × 102). Given the lack of previous estimates for
these parameters in this system, there would be little reason to be
suspicious of these values absent an assessment of model fit. This
example illustrates the importance of performing phylogeographic
model selection before any attempt to make inferences about the

Thomé and Carstens PNAS Early Edition | 5 of 8

EV
O
LU

TI
O
N

CO
LL
O
Q
U
IU
M

PA
PE

R

497
498
499

500
501
502

503
504
505

506
507
508
509

510
511
512

513
514
515

516
517
518
519

520
521
522

523
524
525

526
527
528

529
530
531
532

533
534
535

536
537
538

539
540
541
542

543
544
545

546
547
548

549
550
551

552
553
554
555

556
557
558

562
563
564

565
566
567

568
569
570
571

572
573
574

575
576
577

578

586
587

588
589
590

591
592
593
594

595
596
597

598
599
600

601
602
603
604

605
606
607

608
609
610

611
612
613

614
615
616
617

618
619
620

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1601064113/-/DCSupplemental/pnas.201601064SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1601064113/-/DCSupplemental/pnas.201601064SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1601064113/-/DCSupplemental/pnas.201601064SI.pdf?targetid=nameddest=ST1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1601064113/-/DCSupplemental/pnas.201601064SI.pdf?targetid=nameddest=ST1
bcarstens
Cross-Out

bcarstens
Highlight

bcarstens
Highlight

bcarstens
Highlight
Table 1 should appear approximately here.



evolutionary history of a system, especially those based on
parameter estimates.
There are several advantages to basing phylogeographic infer-

ences on the results of model selection exercises. Such analyses
allow researchers to identify which evolutionary processes have
shaped genetic diversity. In Pleurodema, the divergence of the sister
taxa P. alium and P. diplolister is occurring despite ongoing gene
flow. This inference stems directly from results of the model se-
lection exercise: All of the models that have good AIC scores and
thus receive any appreciable support include some gene flow be-
tween these species. This inference is not based on the magnitude of
the parameter estimates, but solely on the inclusion of the gene flow
parameters in the highest-ranked models. In addition, the results of
the model selection analysis prevent us from overinterpreting our
data (sensu ref. 6). In Pleurodema, previously collected evidence
suggested that population expansion could represent an important
feature of this system (51), but none of the population size change
or bottleneck models offered a good fit to the empirical data. As
much as we expected expansion to be a dominant force shaping
these data, there is no evidence for the influence of this process in
the SNP dataset. We attribute this discrepancy to one of two causes.
It could be that there is an actual difference in the signal between
the SNP data analyzed here and the microsatellite and COI data
analyzed by Thomé et al. (51). Each of these markers evolves at a
different rate and thus will be informative at different timescales.
Thus, it is possible that faster markers perform better in detecting
demographic expansions as recent as 4,240 y B.P. (50). However,
because these analyses differed in the number of individuals in-
cluded (approximately three times as many in the microsatellite
analysis as here), as well as in details of each analysis, this difference
could result from some combination of these differences.
What factors may have caused the initial divergence of P. alium

and P. diplolister? Results from analyses of environmental (climatic)
niche modeling provide two important clues. First, the environ-
mental niche of P. alium does not differ from that of P. diplolister
(see Box 1). This makes it unlikely that these species are un-
dergoing adaptive diversification, a result that is supported by an
outlier loci analysis (for example, a Bayescan analysis detects only
14 out of 6,027 loci as being potentially under selection; Supporting
Information). Second, species distribution modeling supports the
hypothesis of a dynamic distribution for the Caatinga, as the pre-
dicted distribution of these species has changed over the last
130,000 y, including being notably smaller at the mid Holocene, and
somewhat reduced at the LGM (Fig. 3). These historical distribu-
tions are at odds with previous paleomodelling of the SDTFs but
consistent with the palynological record, which indicates that the
present-day distribution of the Caatinga established very recently in
the late Holocene (4,240 y B.P.; ref. 50). The dynamic range of
these species supports the idea that these lineages have been pe-
riodically fragmented, possibly isolated, with secondary contact
inhibiting the formation of reproductive isolation.

New Data, Better Methods, and Improved Inferences from Nonmodel
Organisms. One of theQ:15 pressing issues facing the discipline of phy-
logeography in the past was the limited amount of genetic data that
could be collected from most systems, and the poor quality of pa-
rameter estimates that resulted from analysis of these data (62–64).
In the last decade, advances in sequencing technology have led to
dramatic improvements in the amount of data that can be collected
from nonmodel systems (65, 66). Given modest levels of funding,
researchers can now collect more data from any system than are
likely required to accurately estimate parameters of interest (e.g., refs.
64 and 67). With next-generation datasets, phylogeography is well-
positioned to address a more important question: Which parameters
are important to estimate in a given system? Whereas many of the
methods applied by phylogeographic investigations were developed
initially for the analysis of data from model systems (e.g., ref. 58),
scientists working in nonmodel systems have been forced to confront

the question of model fit, and in response they are developing cre-
ative solutions to identifying models that fit a particular system.
Some approaches to model selection are built into the framework

of existing analytical methods. For example IMa (68), which im-
plements a divergence with gene flow model, can be used to con-
duct model selection using either likelihood ratio tests (e.g., ref. 68)
or information theoretic approaches (69). Similarly Migrate-n (42),
which implements an n-island model, can be used to select among
many migration models (42, 43). In addition, there are a number of
approaches to species delimitation that incorporate model selection.
These include methods that identify the optimal species delim-
itation using likelihood ratio tests (70), reversible-jump Markov
chain Monte Carlo (71, 72), information theory (73), ABC (74), and
marginalized likelihoods (75). Methods for analyzing comparative
phylogeographic data are also under active development, including
the use of hierarchical Bayesian models to test simultaneous di-
vergence (76, 77) or simultaneous population expansion (78, 79).
Although methods that implement model selection are extremely

useful, they lack the flexibility of simulation-based approaches,
which provide researchers with the capacity to customize their
models to the particular details of nearly any empirical systems.
ABC continues to be a useful approach to model selection, par-
ticularly when implemented in computational environments such as
R (e.g., ref. 80) that can be easily used by researchers. Other
methods are available that calculate the probability of SNP data. In
addition to FSC2, used here, model selection can be conducted
using diffusion approximation in the software dadi (81).

Conclusions
Testing the statistical fit of our models given the data enabled us to
address a major limitation of model-based phylogeography (19). By
deriving our phylogeographic inferences from parameters estimated

Box 1 – Environmental Niche Models
We gathered 51 georeferenced occurrence points (2 for P. alium
only, 44 for P. diplolister only, and 5 for both species) from
sequenced samples collected in the core area of the Caatinga
at a minimum distance of 8 km between points. We extracted
climate information from 19 layers of bioclimatic variables
available at the WorldClim website and used principal com-
ponent analysis of occurrence data to compare their niches
(82). Niche overlap was high (D = 0.95) and the hypothesis of
niche equivalency could not be rejected (P = 0.99). The niches
of the two species are more similar than would be by chance
(P = 0.0198). To estimate past distributions we constructed
correlative maps of potential distribution with the maximum
entropy algorithm (83) and projected the model to past envi-
ronmental conditions of the mid-Holocene (6,000 y B.P.) LGM
at 21,000 y B.P. (MIROC4m general circulation model, Pliocene
Model Intercomparison Project), and last interglacial (LIG) at
120,000 y B.P. (84). The study area encompasses current and
putative past Caatinga distributions according to previous stud-
ies (47, 48). We selected eight uncorrelated variables (Pearson
correlation <0.7) downloaded from Bioclim at 2.5 arc minutes
resolution: mean diurnal range, isothermality, temperature sea-
sonality, annual precipitation, precipitation of driest month,
precipitation seasonality, precipitation of warmest quarter, and
precipitation of coldest quarter. We used random training-test
percentages (70% of observations for model training, and 30%
for model testing), the auto features function, and the default
regularization multiplier. The high mean value for the area
under the receiver operating characteristics curve (AUC =
0.960, SD = 0.007, n = 100) indicates that the model perfor-
mance was satisfactory. The most important variable was annual
precipitation (evaluated with 100 iterations).
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under suitable models, we avoided confirmation bias and over-
interpretation. Parameter estimation was of central importance to
our phylogeographic inference process, but only after we made an
objective determination about which parameters to estimate. Per-
haps the greatest advantage of this approach to phylogeography is
that while the inferences themselves do not rely solely on parameter
estimates, the parameters that are estimated via model averaging
are likely to be more representative of the actual population values.
It is incumbent on researchers who do not conduct model selection
as part of their phylogeographic investigations to ask whether their

phylogeographic inferences are based on a model of historical de-
mography that is appropriate for their empirical system.
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Supporting Information
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Scans for Mitochondrial Fragments and Loci Under Selection
To verify the possible presence of the fragments of themitochondrial
genome, we performed the in silico digestion of the mitochondrial
genome from a closely related Pleurodema species for which there is
a complete mitochondria sequence available (Pleurodema thaul) in
2.0 Webcutter online program (RNA.lundberg.gu.se/cutter2/). We
found cutting sites for the restriction enzymes used in the RADseq
protocol to be extremely rare and producing fragments of sizes
larger than the range we selected. We also aligned the raw se-
quences of some individuals over this genome using MITObim (85),
with no significant matches.
We used the Bayesian approach in Bayescan 2.1 (86) to detect

outlier loci under two different configurations. First, to avoid

possible interference of loci under selection in the model se-
lection approach, we defined populations according to the lo-
cations of origin of samples. This analysis yielded 217 loci possibly
under selection with a 0.05 target false discovery rate. Second, we
used Bayescan defining populations according to species as-
signments and co-occurrence (sympatry or allopatry), which re-
duced the number of outlier loci to 14.

Script Used to Downsample SNP Replicate Datasets
APython script used to downsample SNP data and build AFS files
for analysis in FSC2 was kindly provided by Jordan D. Satler
and is available on GitHub at https://github.com/jordansatler/
SNPtoAFS Q:1.

Table S1. Results of FSC2 analyses averaged across replicates

Model lnL k AIC Δi wi

1 −5,625.6470 4 11,259.294 83.77 0.00
2 −5,668.5443 7 11,351.087 175.57 0.00
3 −5,582.7282 6 11,177.456 1.94 0.21
4 −5,582.7601 5 11,175.520 0 0.56
5 −5,625.6169 5 11,261.234 85.71 0.00
6 −6,556.0953 7 13,126.191 1,950.67 0.00
7 −5,581.6987 7 11,177.397 1.88 0.23
8 −5,625.3260 6 11,262.652 87.13 0.00
9 −5,625.4058 6 11,262.812 87.29 0.00

Shown from left for each model (see Fig. 2) are the maximum likelihood
estimate of the model (lnL), the number of parameters (k), the AIC score, the
Aikaike differences (Δi), and model probabilities (wi). Information theoretic
calculations follow Anderson (60).

Other Supporting Information Files

Dataset S1 (TXT)
Dataset S2 (TXT)
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Q: 1_The section “ReadMe: SNPtoAFS” was deleted because this information is given in the README
file available on GitHub.
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